Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
Shanghai Journal of Preventive Medicine ; (12): 563-567, 2022.
Artículo en Chino | WPRIM | ID: wpr-936469

RESUMEN

ObjectiveThe genotoxicity of zinc oxide nanoparticles (ZnO NPs) in rats was determined by Pig⁃a mutation assay in vivo. MethodsCombined with 28-day oral toxicity test, male SD rats were given ZnO NPs by oral administration for 28 days, at doses of 0, 14, 70 and 350 mg‧kg-1 (maximum concentration of nanoscale dispersion state). Rats in control groups received 350 mg‧kg-1 of normal size ZnO, 40 mg‧kg-1 N-ethyl-N⁃nitrosourea(ENU)or 0 mg·kg-1 ZnO NPs(solvent control group) Changes of body weight were recorded. At 0, 15, 28 d and 28 d of recovery observation period, 200 μL of tail venous blood was collected from each group, which was labeled by APC mouse anti-rat erythroid cells and FITC mouse anti-rat CD59. The information of 1×106 red blood cells(RBC) from each sample were collected by flow cytometry, and the mutation rate of RBCCD59- was calculated. ResultsCompared with the solvent control group, after 15 days of intragastric administration, the mutation rate of RBC CD59- in peripheral blood of in 350 mg‧kg-1 ZnO NPs group and 40 mg‧kg-1 ENU group was significantly increased while that of in 70 mg‧kg-1 ZnO NPs group was also significantly increased after 28 days of intragastric administration.with time-response and dose-response relationship. All groups except 40 mg‧kg-1 ENU group showed no significant difference in the mutation rate of RBCCD59- in peripheral blood in comparison with the solvent control group after 28-days recovery observation. Conclusion70 and 350 mg‧kg-1 ZnO NPs can increase the mutation rate of Pig⁃a gene in peripheral blood of SD rats.

2.
Chinese Journal of Analytical Chemistry ; (12): 985-990, 2014.
Artículo en Chino | WPRIM | ID: wpr-452472

RESUMEN

ZnO nanoparticle-containing carbon composite nanofiber ( ZnO-CNF ) was prepared by the electrospinning of the ZnCl2-PAN precursor, followed by preoxidation and carbonization. The ZnO nanoparticles were uniformly distributed on the surface of the carbon nanofiber with the size of 20-30 nm, confirmed by scanning electron microscopy ( SEM ) . The wettability of the ZnO-CNF was studied by water contact angle test. With Nafion as an additive, the ZnO-CNF modified electrode was successfully constructed by dip-coating. The surface morphology and electrochemical properties of the modified electrode were investigated by SEM and cyclic voltammetry. There was a sensitive response of the ZnO-CNF modified electrode on Pb ions in solution, demonstrated by square wave stripping voltammetry. Under the optimized conditions, a good linear relationship between peak current and Pb2+concentration was obtained in the range of 2. 4×10-10-2. 4×10-7 mol/L (R=0. 998) by 10 min preconcentration at -1. 0 V in 0. 1 mol/L NaAc buffer solution (pH=4. 6). The detection limit was 4. 8×10-11 mol/L. The practical analytical application of the ZnO-CNF modified electrode was assessed by the measurement of the actual water sample and the result was consistent with that obtained by ICP-MS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA