Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Añadir filtros








Intervalo de año
1.
Electron J Biotechnol ; 49: 56-63, Jan. 2021. tab, ilus, graf
Artículo en Inglés | LILACS | ID: biblio-1291900

RESUMEN

BACKGROUND: 2R,3R-butanediol dehydrogenase (R-BDH) and other BDHs contribute to metabolism of 3R/3S-Acetoin (3R/3S-AC) and 2,3-butanediol (2,3-BD), which are important bulk chemicals used in different industries. R-BDH is responsible for oxidizing the hydroxyl group at their (R) configuration. Bacillus species is a promising producer of 3R/3S-AC and 2,3-BD. In this study, R-bdh gene encoding R-BDH from Bacillus sp. DL01 was isolated, expressed and identified. RESULTS: R-BDH exerted reducing activities towards Diacetyl (DA) and 3R/3S-AC using NADH, and oxidizing activities towards 2R,3R-BD and Meso-BD using NAD+ , while no activity was detected with 2S,3S-BD. The R-BDH showed its activity at a wide range of temperature (25 C to 65 C) and pH (5.0­8.0). The R-BDH activity was increased significantly by Cd2+ when DA, 3R/3S-AC, and Meso-BD were used as substrates, while Fe2+ enhanced the activity remarkably at 2R,3R-BD oxidation. Kinetic parameters of the R-BDH from Bacillus sp. DL01 showed the lowest Km, the highest Vmax, and the highest Kcat towards the racemic 3R/3S-AC substrate, also displayed low Km towards 2R,3R-BD and Meso-BD when compared with other reported R-BDHs. CONCLUSIONS: The R-BDH from Bacillus sp. DL01 was characterized as a novel R-BDH with high enantioselectivity for R-configuration. It considered NAD+ and Zn2+ dependant enzyme, with a significant affinity towards 3R/3S-AC, 2R,3R-BD, and Meso-BD substrates. Thus, R-BDH is providing an approach to regulate the production of 3R/3S-AC or 2,3-BD from Bacillus sp. DL01.


Asunto(s)
Bacillus subtilis/enzimología , Oxidorreductasas de Alcohol/aislamiento & purificación , Oxidorreductasas de Alcohol/metabolismo , Temperatura , Cinética , Concentración de Iones de Hidrógeno , Acetoína
2.
Electron. j. biotechnol ; 19(1): 41-49, Jan. 2016. ilus
Artículo en Inglés | LILACS | ID: lil-781169

RESUMEN

Background: Currently, microbial fermentation method has become the research hotspot for acetoin production. In our previous work, an acetoin-producing strain, Bacillus subtilis SF4-3, was isolated from Japanese traditional fermented food natto. However, its conversion of glucose to acetoin was relatively low. In order to achieve a high-efficient accumulation of acetoin in B. subtilis SF4-3, main medium components and fermentation conditions were evaluated in this work. Results: The by-products analysis showed that there existed reversible transformation between acetoin and 2,3-butanediol that was strictly responsible for acetoin production in B. subtilis SF4-3. The carbon sources, nitrogen sources and agitation speed were determined to play crucial role in the acetoin production. The optimal media (glucose-H2O 150 g/L, yeast extract 10 g/L, corn steep dry 5 g/L, urea 2 g/L, K2HPO4 0.5 g/L, MgSO4 0.5 g/L) were obtained. Furthermore, the low agitation speed of 300 r/min was found to be beneficial to the reversible transformation of 2,3-butanediol for acetoin production in B. subtilis SF4-3. Eventually, 48.9 g/L of acetoin and 5.5 g/L of 2,3-butanediol were obtained in a 5-L fermenter, and the specific production of acetoin was 39.12% (g/g), which accounted for 79.90% of the theoretical conversion. Conclusions: The results indicated acetoin production of B. subtilis SF4-3 was closely related to the medium components and dissolved oxygen concentrations. It also provided a method for acetoin production via the reversible transformation of acetoin and 2,3-butanediol.


Asunto(s)
Bacillus subtilis , Acetoína/metabolismo , Butileno Glicoles , Técnicas de Cultivo , Fermentación , Glucosa , Nitrógeno
7.
Indian J Exp Biol ; 1975 Nov; 13(6): 586-8
Artículo en Inglés | IMSEAR | ID: sea-55871
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA