RESUMEN
Abstract Introduction: The treatment of infrarenal aortic aneurysms has changed in the last three decades. Endovascular aneurysm repair (EVAR) has become the primary treatment option in anatomically suitable patients with infrarenal aortic aneurysms. However, there is no serum biomarker to be used in EVAR follow-up. Methods: This is a prospective single-centre study of 30 consecutive patients with abdominal aortic aneurysm (AAA) who underwent EVAR. Serum dosages of micro ribonucleic acid 1281 (miRNA-1281), creatinine, total cholesterol, triglycerides, and C-reactive protein (CRP) were evaluated and angiotomographic evaluations were performed preoperatively and six months after the intervention. Results: There was a hyperexpression of miRNA-1281 in patients with AAA and a significant reduction of it after EVAR, from 1.66-fold before EVAR to 0.27 after the procedure (P<0.0001). MiRNA-1281 expression was not influenced by renal function (creatinine: 1.14±0.29, P=0.68), total cholesterol (179.9±59.9, P=0.22), or CRP (1.17±3.5; P=0.48). There is correlation between AAA size and CRP serum levels, however there was no statically significant reduction of CRP after EVAR. Discussion: MiRNA-1281 expression may be influenced by cholesterol, triglycerides levels, and renal function. We found no difference in these markers before and six months after EVAR. However, miRNA-1281 presents a significant reduction in patients with no follow-up complications. We hypothesize that miRNA-1281 expression may be related to aortic wall stress or flow changes. Conclusion: MiRNA-1281 may contribute as a possible marker of EVAR follow-up.
Asunto(s)
Aneurisma de la Aorta Abdominal/cirugía , Aneurisma de la Aorta Abdominal/genética , Implantación de Prótesis Vascular , MicroARNs , Procedimientos Endovasculares , Complicaciones Posoperatorias , Proteína C-Reactiva , Estudios Prospectivos , Estudios Retrospectivos , Factores de Riesgo , Resultado del Tratamiento , Riñón/fisiologíaRESUMEN
Immune-mediated inflammation plays a key role in the pathology of abdominal aortic aneurysm (AAA). We aimed to use a computational approach to profile the immune infiltration patterns and related core genes in AAA samples based on the overexpression of gene signatures. The microarray datasets of AAA and normal abdominal tissues were acquired from gene expression omnibus (GEO) database. We evaluated the composition of immune infiltrates through microenvironment cell populations (MCP)-counter. Weighted gene correlation network analysis (WGCNA) was employed to construct the co-expression network and extract gene information in the most relevant module. Functional and pathway enrichment analysis was performed and immune infiltration related core genes were screened. AAA tissues had a higher level of infiltration by cytotoxic lymphocytes, NK cells, T cells, fibroblasts, myeloid dendritic cells, and neutrophils than normal aorta. The red module was strongly correlated with the infiltrating levels of T cells and cytotoxic lymphocytes. Gene ontology (GO) and pathway analyses revealed that genes in the most relevant module were mainly enriched in T cell activation, regulation of lymphocyte activation, cytokine-cytokine receptor interaction, and chemokine signaling pathway, etc. The expression of GZMK, CCL5, GZMA, CD2, and EOMES showed significant correlations with cytotoxic lymphocytes, while CD247, CD2, CD6, RASGRP1, and CD48 expression were positively associated with T cell infiltration. In conclusion, we comprehensively analyzed profiles of infiltrated immune cells in AAA tissues and their associated marker genes. Our data may provide a novel clue to indicate the underlying molecular mechanisms of AAA formation in terms of immune infiltration.