Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Añadir filtros








Intervalo de año
1.
Indian J Med Sci ; 2010 Sept; 64(9) 402-407
Artículo en Inglés | IMSEAR | ID: sea-145560

RESUMEN

Objective: To investigate the molecular mechanism underlying the differentiation of human umbilical cord-derived mesenchymal stem cells (hUCMSCs) into myocardial cells induced by 5-azacytidine (5-aza), and to explore the expression and significance of DLL4-Notch signaling in this process. Materials and Methods: hUCMSCs were isolated and purified from the umbilical cords of normal or cesarean term deliveries under sterile conditions. After treatment with 5-aza for 24 h, hUCMSCs was continued to culture, the expression of GATA4 and NKx2.5 at 4 weeks after induction, DLL4 and Notch1 mRNA at 1d, 3d, 5d, 7d after induction were detected. The expression of cardiac troponin I (cTnI) after 4 weeks was determined by immunocytochemistry. Results: hUCMSCs treated with 5-aza were stained positively for cTnI 4 weeks after induction. The expression of Notch1 and DLL4 mRNA in the 5-aza-induced group was stable and significantly higher than that in the control group (mean Ct value for the Notch1 gene: 0.51 ± 0.21 in the 5-aza-induced group vs. 7.85 ± 0.35 in the control group; mean Ct value for the DLL4 gene: 1.60 ± 0.49 in the 5-aza-induced group vs. 12.42 ± 0.73 in the control group). Similar results were observed for Nkx2.5 and GATA4 genes. The expressions of Nkx2.5 and GATA4 mRNA in the 5-aza group were 4.72 ± 0.58 and 3.76 ± 0.06 times higher than that in the control group, respectively, with statistical significance. Conclusions: hUCMSCs can be differentiated into myocardial cells by 5-aza induction in vitro. 5-Aza may affect this process by regulating the expression of GATA4 and Nkx2.5 genes. The DLL4-Notch signal pathway may be involved in this process.


Asunto(s)
Azacitidina/metabolismo , Diferenciación Celular/efectos de los fármacos , Factor de Transcripción GATA4/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Células Madre Mesenquimatosas/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Receptor Notch1/metabolismo , Receptores Notch/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/metabolismo , Cordón Umbilical/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA