Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Chinese Journal of Traumatology ; (6): 42-52, 2024.
Artículo en Inglés | WPRIM | ID: wpr-1009505

RESUMEN

PURPOSE@#Mannitol is one of the first-line drugs for reducing cerebral edema through increasing the extracellular osmotic pressure. However, long-term administration of mannitol in the treatment of cerebral edema triggers damage to neurons and astrocytes. Given that neural stem cell (NSC) is a subpopulation of main regenerative cells in the central nervous system after injury, the effect of mannitol on NSC is still elusive. The present study aims to elucidate the role of mannitol in NSC proliferation.@*METHODS@#C57 mice were derived from the animal house of Zunyi Medical University. A total of 15 pregnant mice were employed for the purpose of isolating NSCs in this investigation. Initially, mouse primary NSCs were isolated from the embryonic cortex of mice and subsequently identified through immunofluorescence staining. In order to investigate the impact of mannitol on NSC proliferation, both cell counting kit-8 assays and neurospheres formation assays were conducted. The in vitro effects of mannitol were examined at various doses and time points. In order to elucidate the role of Aquaporin 4 (AQP4) in the suppressive effect of mannitol on NSC proliferation, various assays including reverse transcription polymerase chain reaction, western blotting, and immunocytochemistry were conducted on control and mannitol-treated groups. Additionally, the phosphorylated p38 (p-p38) was examined to explore the potential mechanism underlying the inhibitory effect of mannitol on NSC proliferation. Finally, to further confirm the involvement of the p38 mitogen-activated protein kinase-dependent (MAPK) signaling pathway in the observed inhibition of NSC proliferation by mannitol, SB203580 was employed. All data were analyzed using SPSS 20.0 software (SPSS, Inc., Chicago, IL). The statistical analysis among multiple comparisons was performed using one-way analysis of variance (ANOVA), followed by Turkey's post hoc test in case of the data following a normal distribution using a Shapiro-Wilk normality test. Comparisons between 2 groups were determined using Student's t-test, if the data exhibited a normal distribution using a Shapiro-Wilk normality test. Meanwhile, data were shown as median and interquartile range and analyzed using the Mann-Whitney U test, if the data failed the normality test. A p < 0.05 was considered as significant difference.@*RESULTS@#Primary NSC were isolated from the mice, and the characteristics were identified using immunostaining analysis. Thereafter, the results indicated that mannitol held the capability of inhibiting NSC proliferation in a dose-dependent and time-dependent manner using cell counting kit-8, neurospheres formation, and immunostaining of Nestin and Ki67 assays. During the process of mannitol suppressing NSC proliferation, the expression of AQP4 mRNA and protein was downregulated, while the gene expression of p-p38 was elevated by reverse transcription polymerase chain reaction, immunostaining, and western blotting assays. Subsequently, the administration of SB203580, one of the p38 MAPK signaling pathway inhibitors, partially abrogated this inhibitory effect resulting from mannitol, supporting the fact that the p38 MAPK signaling pathway participated in curbing NSC proliferation induced by mannitol.@*CONCLUSIONS@#Mannitol inhibits NSC proliferation through downregulating AQP4, while upregulating the expression of p-p38 MAPK.


Asunto(s)
Humanos , Animales , Manitol/farmacología , Edema Encefálico , Células-Madre Neurales/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas p38 Activadas por Mitógenos/farmacología , Proliferación Celular
2.
Neuroscience Bulletin ; (6): 393-408, 2023.
Artículo en Inglés | WPRIM | ID: wpr-971565

RESUMEN

Glioma is the most common and lethal intrinsic primary tumor of the brain. Its controversial origins may contribute to its heterogeneity, creating challenges and difficulties in the development of therapies. Among the components constituting tumors, glioma stem cells are highly plastic subpopulations that are thought to be the site of tumor initiation. Neural stem cells/progenitor cells and oligodendrocyte progenitor cells are possible lineage groups populating the bulk of the tumor, in which gene mutations related to cell-cycle or metabolic enzymes dramatically affect this transformation. Novel approaches have revealed the tumor-promoting properties of distinct tumor cell states, glial, neural, and immune cell populations in the tumor microenvironment. Communication between tumor cells and other normal cells manipulate tumor progression and influence sensitivity to therapy. Here, we discuss the heterogeneity and relevant functions of tumor cell state, microglia, monocyte-derived macrophages, and neurons in glioma, highlighting their bilateral effects on tumors. Finally, we describe potential therapeutic approaches and targets beyond standard treatments.


Asunto(s)
Humanos , Glioma/metabolismo , Neuroglía/metabolismo , Carcinogénesis/patología , Células-Madre Neurales/metabolismo , Microglía/metabolismo , Neoplasias Encefálicas/metabolismo , Microambiente Tumoral
3.
Chinese Journal of Stomatology ; (12): 375-383, 2022.
Artículo en Chino | WPRIM | ID: wpr-935870

RESUMEN

Objectives: To study the effects of Porphyromonas gingivalis (Pg) injected through tail vein on the molecular expression levels of biomarkers of neural stem cells (NSC) and neurons in the hippocampus of wild-type adult rats, and the effects on hippocampal neurogenesis. Methods: Eighteen male Sprague-Dawley (SD) rats were randomly divided into 3 groups based on the table of random numbers (n=6 in each group). In low-intensity group and high-intensity group, rats were injected intravenously through tail vein with 200 μl Pg ATCC33277 [1.0×103 and 1.0×108 colony forming unit (CFU), respectively] 3 times per week for 8 weeks. In the sham group, 200 μl of phosphate buffer saline (PBS) was given instead. Behavioral tests: the navigation and the exploration tests using Morris water maze (MWM) were applied to evaluate learning and memory ability of rats. Immunohistochemistry was performed to detect cells positively expressing nestin, doublecortin (DCX) and neuronal nuclei (NeuN) in the subgranular zone (SGZ) of rats in each group. Western blotting was used to evaluate the expression levels of nestin, DCX and NeuN in rat hippocampus. Results: Learning and memory abilities: on day 5 of navigation test, the lagency time was 22.83 (16.00, 38.34) s in the high-intensity group, significantly longer than the sham group [5.59 (5.41, 6.17) s] (t=-11.17, P<0.001). There were no significant differences between the low-intensity group [9.85 (8.75, 21.01) s] and the sham group (t=-6.83, P=0.080). Results in the exploration test showed that, in the high-intensity group, the number of fime crossing over the previous platform area within 60 s was 1.50 (1.00, 2.00), significantly less than the sham group [4.00 (2.75, 4.00)] (t=9.75, P=0.003); no significant differences between the low-intensity group [2.50 (2.00, 3.00)] and the sham one (t=4.50, P=0.382). Immunohistochemistry showed that the nestin+ cell density in the low-intensity group [(35.36±4.32) cell/mm2] and high-intensity group [(26.51±5.89) cell/mm2] were significantly lower than the sham group [(59.58±14.15) cell/mm2] (t=24.21, P=0.018; t=33.07, P=0.005); as for the mean absorbance of DCX+ cells, the low-intensity group (0.007±0.002) and the high-intensity group (0.006±0.002) were significantly lower than the sham group (0.011±0.001) (t=0.004, P=0.018; t=0.006, P=0.005); compared with the sham group [(1.13±0.14)×103 cell/mm2], the density of NeuN+ neurons in the high-intensity group [(0.75±0.08)×103 cell/mm2] was significantly reduced (t=0.38, P=0.017), and was not significantly changed in the low-intensity group [(0.88±0.19)×103 cell/mm2] (t=0.25, P=0.075). Western blotting results showed that, compared with the sham group, the expression levels of nestin, DCX, and NeuN were significantly reduced in the high-intensity group (t=0.74, P<0.001; t=0.18, P=0.014; t=0.35, P=0.008), but were not statistically changed in the low-intensity group (t=0.18, P=0.108; t=0.08, P=0.172; t=0.19, P=0.077). Conclusions: Pg injected through tail vein may reduce learning and memory abilities of wild-type rats, and may reduce the number of nestin, DCX, and NeuN-positive cells, and the protein expression levels of the above molecules in the hippocampus.


Asunto(s)
Animales , Masculino , Ratas , Biomarcadores/metabolismo , Hipocampo/metabolismo , Nestina/metabolismo , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Porphyromonas gingivalis/metabolismo , Ratas Sprague-Dawley , Cola (estructura animal)/metabolismo
4.
International Journal of Oral Science ; (4): 13-13, 2022.
Artículo en Inglés | WPRIM | ID: wpr-929141

RESUMEN

The high neurogenic potential of dental and oral-derived stem cells due to their embryonic neural crest origin, coupled with their ready accessibility and easy isolation from clinical waste, make these ideal cell sources for neuroregeneration therapy. Nevertheless, these cells also have high propensity to differentiate into the osteo-odontogenic lineage. One strategy to enhance neurogenesis of these cells may be to recapitulate the natural physiological electrical microenvironment of neural tissues via electroactive or electroconductive tissue engineering scaffolds. Nevertheless, to date, there had been hardly any such studies on these cells. Most relevant scientific information comes from neurogenesis of other mesenchymal stem/stromal cell lineages (particularly bone marrow and adipose tissue) cultured on electroactive and electroconductive scaffolds, which will therefore be the focus of this review. Although there are larger number of similar studies on neural cell lines (i.e. PC12), neural stem/progenitor cells, and pluripotent stem cells, the scientific data from such studies are much less relevant and less translatable to dental and oral-derived stem cells, which are of the mesenchymal lineage. Much extrapolation work is needed to validate that electroactive and electroconductive scaffolds can indeed promote neurogenesis of dental and oral-derived stem cells, which would thus facilitate clinical applications in neuroregeneration therapy.


Asunto(s)
Diferenciación Celular , Células Madre Mesenquimatosas/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis , Andamios del Tejido
5.
Chinese journal of integrative medicine ; (12): 229-235, 2022.
Artículo en Inglés | WPRIM | ID: wpr-928959

RESUMEN

OBJECTIVE@#To study the effects of total ginsenosides (TG) extract from Panax ginseng on neural stem cell (NSC) proliferation and differentiation and their underlying mechanisms.@*METHODS@#The migration of NSCs after treatment with various concentrations of TG extract (50, 100, or 200 µ g/mL) were monitored. The proliferation of NSCs was examined by a combination of cell counting kit-8 and neurosphere assays. NSC differentiation mediated by TG extract was evaluated by Western blotting and immunofluorescence staining to monitor the expression of nestin and microtubule associated protein 2 (MAP2). The GSK-3β/β-catenin pathway in TG-treated NSCs was examined by Western blot assay. The NSCs with constitutively active GSK-3β mutant were made by adenovirus-mediated gene transfection, then the proliferation and differentiation of NSCs mediated by TG were further verified.@*RESULTS@#TG treatment significantly enhanced NSC migration (P<0.01 or P<0.05) and increased the proliferation of NSCs (P<0.01 or P<0.05). TG mediation also significantly upregulated MAP2 expression but downregulated nestin expression (P<0.01 or P<0.05). TG extract also significantly induced GSK-3β phosphorylation at Ser9, leading to GSK-3β inactivation and, consequently, the activation of the GSK-3β/β-catenin pathway (P<0.01 or P<0.05). In addition, constitutive activation of GSK-3β in NSCs by the transfection of GSK-3β S9A mutant was found to significantly suppress TG-mediated NSC proliferation and differentiation (P<0.01 or P<0.05).@*CONCLUSION@#TG promoted NSC proliferation and neuronal differentiation by inactivating GSK-3β.


Asunto(s)
Animales , Ratas , Diferenciación Celular , Proliferación Celular , Ginsenósidos/farmacología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Células-Madre Neurales/metabolismo , Panax , Extractos Vegetales/farmacología , beta Catenina/metabolismo
6.
Neuroendocrinology ; 104(2): 183-193, 2017.
Artículo en Inglés | LILACS, SES-SP | ID: biblio-1024761

RESUMEN

Background/Aims: Although craniopharyngioma (CP) is histologically benign, it is a pituitary tumour that grows rapidly and often recurs. Adamantinomatous CP (ACP) was associated with an activating mutation in ß-catenin, and it has been postulated that pituitary stem cells might play a role in oncogenesis in human ACP. Stem cells have also been identified in pituitary adenoma. Our aim was to characterize the expression pattern of ABCG2, CD44, DLL4, NANOG, NOTCH2, POU5F1/OCT4, SOX2, and SOX9 stem cell markers in human ACP and pituitary adenoma. Methods and Results: We studied 33 patients (9 ACP and 24 adenoma) using real-time quantitative PCR (RT-qPCR) and immunohistochemistry. SOX9 was up-regulated in ACP, exhibiting positive immunostaining in the epithelium and stroma, with the highest expression in patients with recurrence. CD44 was overexpressed in ACP as confirmed by immunohistochemistry. SOX2 did not significantly differ among the tumour types. The RT-qPCR array showed an increased expression of MKI67,OCT4/POU5F1, and DLL4 in all tumours. NANOG was decreased in ACP. ABCG2 was down-regulated in most of the tumours. NOTCH2 was significantly decreased in the adenomas. Conclusion: Our results confirm the presence of stem cell markers in human pituitary tumours as well as the different expression patterns of ACP and adenoma. These findings suggest that ACP may originate from a more undifferentiated cell cluster. Additionally, SOX9 immunodetection in the stroma and the highest expression levels related to the relapse of patients suggest a contribution to the aggressive behaviour and high recurrence of this tumour type.


Asunto(s)
Neoplasias Hipofisarias/metabolismo , Anciano , Humanos , Biomarcadores de Tumor/metabolismo , Adenoma/metabolismo , Adenoma/patología , Expresión Génica , Niño , Preescolar , Adolescente , Receptores de Hialuranos/metabolismo , Craneofaringioma/metabolismo , Craneofaringioma/patología , Células-Madre Neurales/metabolismo
7.
Arq. bras. oftalmol ; 79(6): 395-399, Nov.-Dec. 2016. tab, graf
Artículo en Inglés | LILACS | ID: biblio-838761

RESUMEN

ABSTRACT Purpose: The cellular origin of retinoblastoma is uncertain as constituent tumor cells heterogeneously express markers of both immature and mature retinal cells. An immunohistochemical analysis of cellular origin may yield valuable insights into disease progression and treatment options. This study aimed to determine the cellular origin of retinoblastoma in a large case series and correlate these findings with histopathological prognostic factors. Methods: Thirty-nine retinoblastoma cases were histopathologically diagnosed and analyzed by immunohistochemistry using monoclonal antibodies against the immature neural cell marker SRY-box containing gene 2 (SOX-2), the mature neuronal cell marker microtubule-associated protein 2 (MAP2), and the mature glial cell marker glial fibrillary acidic protein (GFAP). Histopathological features were also evaluated, including patterns of growth, differentiation, vitreous seeding, and choroidal/scleral, optic nerve, and anterior chamber invasion. Two retinoblastoma cell lines, WERI-1 and Y79, were studied by immunocytochemistry using the same antibodies. Results: Expression of SOX-2 was strong in 97.4% of retinoblastoma cases, while MAP-2 was expressed in 59% of cases. Immunostaining for GFAP was positive only in reactive stromal astrocytes interspersed amongst tumor cells and in peritumoral tissue. There was no correlation between histopathological prognostic factors and immunohistochemical markers. Retinoblastoma cell lines showed strong positivity for SOX2 (90% of WERI-1 cells and 70% of Y79 cells) and MAP2 (90% of cells in both lines). GFAP was completely negative in both cell lines. Conclusion: The majority of retinoblastomas and both RB cell lines expressed an immature neural and/or a mature neuronal cell marker, but not a glial marker. These results indicate a typical neuroblast or neuronal origin and eliminate astrocyte differentiation from neural stem cells as the source of retinoblastoma.


RESUMO Objetivos: Este estudo visa determinar a origem do retinoblastoma em um número de casos e correlacionar essos achados com fatores prognósticos e histopatológicos conhecidos. Métodos: Trinta e nove casos de retinoblastoma foram diagnosticados e analisados com imuno-histoquímica usando marcadores de anticorpos monoclonais contra as células de retina imaturas (SOX-2: SRY-box containing gene 2), contra as células da retina maturas (MAP2: microtubule -associated protein 2) e contra as células gliais maturas (GFAP: glial fibrillar acidic protein). Foram avaliadas características microscópicas dos casos (grau de diferenciação, presença de semeadura vítrea, invasão de coroide/esclera, nervo óptico e câmara anterior). Duas linhas celulares de retinoblastoma (WERI-1 e Y79) também foram testadas, utilizando os três marcadores. Resultados: A expressão de SOX-2 foi positiva em 97,4% dos casos de retinoblastoma, enquanto MAP2 foi positivo em 59% dos casos. GFAP foi apenas positivo no estroma (astrócitos reativos). Não houve correlação entre preditores histopatológicos e marcadores imunohistoquímicos avaliados. As linhagens celulares mostraram positividade para SOX-2 (90% em WERI-1 e 70% das células Y79). Ambas as linhagens celulares se mostraram fortemente positivas con MAP2 (90%), enquanto não houve expressão de GFAP em nenhuma das linhas celulares estudadas. Conclusões: A maioria das células de retinoblastoma desta série de casos expressa marcadores de células retinianas imaturas, além de marcadores de células maduras. As linhas celulares Y79 e WERI-1 apresentaram imunomarcação para ambos os marcadores neurais em percentagens semelhantes a dos casos avaliados. Portanto, estes resultados confirmam a origem neural do tumor em particular. Alem disso, a ausência de células positivas para GFAP no tumor descarta diferenciação de astrócitos em retinoblastoma.


Asunto(s)
Humanos , Masculino , Femenino , Lactante , Preescolar , Niño , Retinoblastoma/metabolismo , Neuroglía/metabolismo , Neoplasias de la Retina/metabolismo , Células-Madre Neurales/patología , Fenotipo , Pronóstico , Retinoblastoma/patología , Inmunohistoquímica , Biomarcadores/metabolismo , Neuroglía/patología , Astrocitos/metabolismo , Astrocitos/patología , Factores de Transcripción SOXB1/metabolismo , Células-Madre Neurales/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Anticuerpos Monoclonales/análisis , Anticuerpos Monoclonales/metabolismo
8.
Arch. argent. pediatr ; 113(3): e137-e139, jun. 2015.
Artículo en Español | LILACS | ID: lil-750470

RESUMEN

El síndrome de Wiskott-Aldrich es una inmunodeficiencia primaria; con una incidencia de 3,5 a 5,2 por cada millón de recién nacidos masculinos. Se caracteriza por tener un patrón de herencia recesiva ligada al cromosoma X. En estos pacientes; se ha descrito la tríada clásica de inmunodeficiencia; microtrombocitopenia y eczema. Presentamos un paciente de 5 años de edad; hispánico; con antecedentes de numerosas infecciones desde el primer año de vida. Actualmente; presenta desnutrición crónica; talla baja secundaria y retraso en el desarrollo del lenguaje. Se diagnosticó una mutación poco frecuente del gen asociado al síndrome de Wiskott-Aldrich.


The Wiskott-Aldrich syndrome is a rare X-linked recessive immunodeficiency, with an estimated incidence of 3.5 to 5.2 cases per million males. It is characterizedby immunodeficiency, microthrombocytopenia and eczema. We present a 5-year-old Hispanic male, with a medical history of numerous infectious diseases, compromised health, chronic malnutrition, language delay and failure to thrive. An infrequent mutation in the Wiskott-Aldrich syndrome gene was found.


Asunto(s)
Animales , Embrión de Pollo , Proteínas Aviares/metabolismo , Cadherinas/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Proteínas Aviares/antagonistas & inhibidores , Proteínas Aviares/genética , Secuencia de Bases , Recuento de Células , Cadherinas/antagonistas & inhibidores , Cadherinas/genética , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Tubo Neural/citología , Tubo Neural/embriología , Tubo Neural/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Interferencia de ARN , ARN Interferente Pequeño/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA