Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
China Journal of Chinese Materia Medica ; (24): 1483-1490, 2023.
Artículo en Chino | WPRIM | ID: wpr-970619

RESUMEN

In this study, the effect of brassinosteroid(BR) on the physiological and biochemical conditions of 2-year-old Panax notoginseng under the cadmium stress was investigated by the pot experiments. The results showed that cadmium treatment at 10 mg·kg~(-1) inhibited the root viability of P. notoginseng, significantly increased the content of H_2O_2 and MDA in the leaves and roots of P. noto-ginseng, caused oxidative damage of P. notoginseng, and reduced the activities of SOD and CAT. Cadmium stress reduced the chlorophyll content of P. notoginseng, increased leaf F_o, reduced F_m, F_v/F_m, and PIABS, and damaged the photosynthesis system of P. notoginseng. Cadmium treatment increased the soluble sugar content of P. notoginseng leaves and roots, inhibited the synthesis of soluble proteins, reduced the fresh weight and dry weight, and inhibited the growth of P. notoginseng. External spray application of 0.1 mg·L~(-1) BR reduced the H_2O_2 and MDA content in P. notoginseng leaves and roots under the cadmium stress, alleviated cadmium-induced oxidative damage to P. notoginseng, improved the antioxidant enzyme activity and root activity of P. notoginseng, increased the content of chlorophyll, reduced the F_o of P. notoginseng leaves, increased F_m, F_v/F_m, and PIABS, alleviated the cadmium-induced damage to the photosynthesis system, and improved the synthesis ability of soluble proteins. In summary, BR can enhance the anti-cadmium stress ability of P. notoginseng by regulating the antioxidant enzyme system and photosynthesis system of P. notoginseng under the cadmium stress. In the context of 0.1 mg·L~(-1) BR, P. notoginseng can better absorb and utilize light energy and synthesize more nutrients, which is more suitable for the growth and development of P. notoginseng.


Asunto(s)
Cadmio/metabolismo , Antioxidantes/farmacología , Panax notoginseng , Brasinoesteroides/farmacología , Clorofila/metabolismo , Raíces de Plantas/metabolismo , Estrés Fisiológico
2.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 279-291, 2023.
Artículo en Inglés | WPRIM | ID: wpr-982699

RESUMEN

Oxidative stress plays a crucial role in cadmium (Cd)-induced myocardial injury. Mitsugumin 53 (MG53) and its mediated reperfusion injury salvage kinase (RISK) pathway have been demonstrated to be closely related to myocardial oxidative damage. Potentilla anserina L. polysaccharide (PAP) is a polysaccharide with antioxidant capacity, which exerts protective effect on Cd-induced damage. However, it remains unknown whether PAP can prevent and treat Cd-induced cardiomyocyte damages. The present study was desgined to explore the effect of PAP on Cd-induced damage in H9c2 cells based on MG53 and the mediated RISK pathway. For in vitro evaluation, cell viability and apoptosis rate were analyzed by CCK-8 assay and flow cytometry, respectively. Furthermore, oxidative stress was assessed by 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) staining and using superoxide dismutase (SOD), catalase (CAT), and glutathione/oxidized glutathione (GSH/GSSG) kits. The mitochondrial function was measured by JC-10 staining and ATP detection assay. Western blot was performed to detect the expression of proteins related to MG53, the RISK pathway, and apoptosis. The results indicated that Cd increased the levels of reactive oxygen species (ROS) in H9c2 cells. Cd decreased the activities of SOD and CAT and the ratio of GSH/GSSG, resulting in decreases in cell viability and increases in apoptosis. Interestingly, PAP reversed Cd-induced oxidative stress and cell apoptosis. Meanwhile, Cd reduced the expression of MG53 in H9c2 cells and inhibited the RISK pathway, which was mediated by decreasing the ratio of p-AktSer473/Akt, p-GSK3βSer9/GSK3β and p-ERK1/2/ERK1/2. In addition, Cd impaired mitochondrial function, which involved a reduction in ATP content and mitochondrial membrane potential (MMP), and an increase in the ratio of Bax/Bcl-2, cytoplasmic cytochrome c/mitochondrial cytochrome c, and Cleaved-Caspase 3/Pro-Caspase 3. Importantly, PAP alleviated Cd-induced MG53 reduction, activated the RISK pathway, and reduced mitochondrial damage. Interestingly, knockdown of MG53 or inhibition of the RISK pathway attenuated the protective effect of PAP in Cd-induced H9c2 cells. In sum, PAP reduces Cd-induced damage in H9c2 cells, which is mediated by increasing MG53 expression and activating the RISK pathway.


Asunto(s)
Cadmio/metabolismo , Caspasa 3/metabolismo , Potentilla/metabolismo , Glucógeno Sintasa Quinasa 3 beta/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Citocromos c/metabolismo , Disulfuro de Glutatión/farmacología , Estrés Oxidativo , Miocitos Cardíacos , Especies Reactivas de Oxígeno/metabolismo , Daño por Reperfusión/metabolismo , Apoptosis , Polisacáridos/farmacología , Adenosina Trifosfato/metabolismo
3.
Braz. j. biol ; 78(3): 509-516, Aug. 2018. tab, graf
Artículo en Inglés | LILACS | ID: biblio-951583

RESUMEN

Abstract Typha domingensis (cattail) is a native macrophyte known by its capacity to tolerate several heavy metals effects and the potential use for phytoremediation. However, in despite that cadmium (Cd) is one of the most toxic pollutants; its effects in T. domingensis biology remain uninvestigated. Thus, the objective of this study was to study the tolerance of T. domingensis to cadmium contamination by evaluating its growth, Cd uptake, leaf anatomy and gas exchange. The experiment was designed using three cadmium concentrations (0, 10 and 50 µM) and ten replicates for 90 days. The cadmium uptake, growth, gas exchange, chlorophyll content and leaf anatomy were evaluated. Data was submitted to ANOVA and Scott-Knott test for P<0.05. Typha domingensis accumulates Cd proportionally to its concentration on the solution and the content of this metal was higher in roots as compared to shoots. Plants showed no significant modifications on growth parameters such as the biomass production, number of leaves, number of clones and the biomass allocation to organs. The photosynthesis, transpiration and chlorophyll content were not modified by Cd. Most anatomical traits evaluated were not modified by the metal but the stomatal density and the proportion of vascular tissues were reduced under 50 µM of Cd. In despite, the leaf anatomy showed no toxicity evidences for any Cd level. The absence of growth reduction and the stability of anatomical and physiological traits give insight about the Cd tolerance of this species. Therefore, T. domingensis is able to overcome Cd toxicity and shows potential for phytoremediation.


Resumo A espécie Typha domingensis (taboa) é uma macrófita nativa conhecida por sua tolerância a vários metais pesados e potencial uso na fitorremediação. Contudo, apesar de que o Cd é um dos poluentes mais tóxicos; Seus efeitos em T. domingensis ainda não foram investigados. Assim, o objetivo desse estudo foi avaliar a tolerância de T. domingensis ao cádmio, avaliando o crescimento, absorção de Cd, anatomia foliar e trocas gasosas. O experimento foi conduzido utilizando três concentrações de Cd (0, 10 e 50 µM) e dez repetições por 90 dias.. O crescimento, trocas gasosas e o teor de clorofila e anatomia foliar foram avaliados. Os dados foram submetidos à ANOVA e ao teste de Scott-Knott para P<0,05. A absorção de cádmio, crescimento, trocas gasosas, teor de clorofila e anatomia foliar foram analisados. As plantas de T. domingensis podem acumular Cd proporcionalmente à sua concentração na solução e o teor deste metal foi maior nas raízes em comparação com a parte aérea. As plantas não apresentam modificações significativas nos parâmetros de crescimento como produção de biomassa, número de folhas, número de clones produzidos e alocação de biomassa nos órgãos. A fotossíntese, transpiração e conteúdo de clorofila não foram afetados de forma significativa pelo Cd. A maioria das características anatômicas avaliadas não apresentou diferenças, mas houve redução na densidade estomática e na proporção de tecidos vasculares na concentração de 50 µM de Cd. A anatomia foliar não mostrou evidências de toxicidade em nenhum dos níveis de Cd. A ausência de redução de crescimento e estabilidade das características anatômicas e fisiológicas caracteriza alta tolerância da espécie ao Cd. Portanto, T. domingensis é capaz de superar a toxicidade do Cd e demostra potencial para fitorremediação.


Asunto(s)
Cadmio/metabolismo , Hojas de la Planta/metabolismo , Typhaceae/crecimiento & desarrollo , Typhaceae/metabolismo , Fotosíntesis/fisiología , Biodegradación Ambiental , Cadmio/toxicidad , Clorofila/metabolismo , Clorofila/química , Raíces de Plantas/metabolismo , Raíces de Plantas/química , Hojas de la Planta/química , Biomasa , Relación Dosis-Respuesta a Droga
4.
Braz. j. microbiol ; 49(2): 258-268, Apr.-June 2018. graf
Artículo en Inglés | LILACS | ID: biblio-889233

RESUMEN

Abstract Cellulosimicrobium cellulans CWS2, a novel strain capable of utilizing benzo(a)pyrene (BaP) as the sole carbon and energy source under nitrate-reducing conditions, was isolated from PAH-contaminated soil. Temperature and pH significantly affected BaP biodegradation, and the strain exhibited enhanced biodegradation ability at temperatures above 30 °C and between pH 7 and 10. The highest BaP removal rate (78.8%) was observed in 13 days when the initial BaP concentration was 10 mg/L, and the strain degraded BaP at constant rate even at a higher concentration (50 mg/L). Metal exposure experimental results illustrated that Cd(II) was the only metal ion that significantly inhibited biodegradation of BaP. The addition of 0.5 and 1.0 g/L glucose enhanced BaP biodegradation, while the addition of low-molecular-weight organic acids with stronger acidity reduced BaP removal rates during co-metabolic biodegradation. The addition of phenanthrene and pyrene, which were degraded to some extent by the strain, showed no distinct effect on BaP biodegradation. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that the five rings of BaP opened, producing compounds with one to four rings which were more bioavailable. Thus, the strain exhibited strong BaP degradation capability and has great potential in the remediation of BaP-/PAH-contaminated environments.


Asunto(s)
Microbiología del Suelo , Contaminantes del Suelo/metabolismo , Benzo(a)pireno/metabolismo , Actinobacteria/aislamiento & purificación , Actinobacteria/metabolismo , Temperatura , Cadmio/metabolismo , Carbono/metabolismo , Ácidos Carboxílicos/metabolismo , Biotransformación , Actinobacteria/clasificación , Medios de Cultivo/química , Inhibidores Enzimáticos/metabolismo , Glucosa/metabolismo , Concentración de Iones de Hidrógeno , Anaerobiosis , Cromatografía de Gases y Espectrometría de Masas
5.
Braz. j. microbiol ; 49(1): 29-37, Jan.-Mar. 2018. tab, graf
Artículo en Inglés | LILACS | ID: biblio-889196

RESUMEN

ABSTRACT Increased environmental pollution has necessitated the need for eco-friendly clean-up strategies. Filamentous fungal species from gold and gemstone mine site soils were isolated, identified and assessed for their tolerance to varied heavy metal concentrations of cadmium (Cd), copper (Cu), lead (Pb), arsenic (As) and iron (Fe). The identities of the fungal strains were determined based on the internal transcribed spacer 1 and 2 (ITS 1 and ITS 2) regions. Mycelia growth of the fungal strains were subjected to a range of (0-100 Cd), (0-1000 Cu), (0-400 Pb), (0-500 As) and (0-800 Fe) concentrations (mgkg-1) incorporated into malt extract agar (MEA) in triplicates. Fungal radial growths were recorded every three days over a 13-days' incubation period. Fungal strains were identified as Fomitopsis meliae, Trichoderma ghanense and Rhizopus microsporus. All test fungal exhibited tolerance to Cu, Pb, and Fe at all test concentrations (400-1000 mgkg-1), not differing significantly (p > 0.05) from the controls and with tolerance index >1. T. ghanense and R. microsporus demonstrated exceptional capacity for Cd and As concentrations, while showing no significant (p > 0.05) difference compared to the controls and with a tolerance index >1 at 25 mgkg-1 Cd and 125 mgkg-1 As. Remarkably, these fungal strains showed tolerance to metal concentrations exceeding globally permissible limits for contaminated soils. It is envisaged that this metal tolerance trait exhibited by these fungal strains may indicate their potentials as effective agents for bioremediative clean-up of heavy metal polluted environments.


Asunto(s)
Hongos/aislamiento & purificación , Hongos/metabolismo , Metales Pesados/metabolismo , Contaminantes del Suelo/metabolismo , Cadmio/análisis , Cadmio/metabolismo , Cobre/análisis , Cobre/metabolismo , Hongos/clasificación , Hongos/genética , Oro/análisis , Oro/metabolismo , Metales Pesados/análisis , Minería , Filogenia , Contaminantes del Suelo/análisis
6.
Journal of Zhejiang University. Science. B ; (12): 147-158, 2018.
Artículo en Inglés | WPRIM | ID: wpr-1010375

RESUMEN

Vegetables are important constituents of the human diet. Heavy metals and nitrate are among the major contaminants of vegetables. Consumption of vegetables and fruits with accumulated heavy metals and nitrate has the potential to damage different body organs leading to unwanted effects. Breeding vegetables with low heavy metal and nitrate contaminants is a cost-effective approach. We investigated 38 water spinach genotypes for low Cd and nitrate co-accumulation. Four genotypes, i.e. JXDY, GZQL, XGDB, and B888, were found to have low co-accumulation of Cd (<0.71 mg/kg dry weight) and nitrate (<3100 mg/kg fresh weight) in the edible parts when grown in soils with moderate contamination of both Cd (1.10 mg/kg) and nitrate (235.2 mg/kg). These genotypes should be appropriate with minimized risk to humans who consume them. The Cd levels in the edible parts of water spinach were positively correlated with the concentration of Pb or Zn, but Cd, Pb, or Zn was negatively correlated with P concentration. These results indicate that these three heavy metals may be absorbed into the plant in similar proportions or in combination, minimizing the influx to aerial parts. Increasing P fertilizer application rates appears to prevent heavy metal and nitrate translocation to shoot tissues and the edible parts of water spinach on co-contaminated soils.


Asunto(s)
Humanos , Biomasa , Cadmio/metabolismo , Clorofila/análisis , Genotipo , Ipomoea/genética , Nitratos/metabolismo
7.
Braz. j. microbiol ; 48(3): 537-543, July-Sept. 2017. graf
Artículo en Inglés | LILACS | ID: biblio-889126

RESUMEN

Abstract Metallothioneins are a superfamily of low-molecular-weight, cysteine (Cys)-rich proteins that are believed to play important roles in protection against metal toxicity and oxidative stress. The main purpose of this study was to investigate the effect of heterologous expression of a rice metallothionein isoform (OsMTI-1b) on the tolerance of Saccharomyces cerevisiae to Cd2+, H2O2 and ethanol stress. The gene encoding OsMTI-1b was cloned into p426GPD as a yeast expression vector. The new construct was transformed to competent cells of S. cerevisiae. After verification of heterologous expression of OsMTI-1b, the new strain and control were grown under stress conditions. In comparison to control strain, the transformed S. cerevisiae cells expressing OsMTI-1b showed more tolerance to Cd2+ and accumulated more Cd2+ ions when they were grown in the medium containing CdCl2. In addition, the heterologous expression of GST-OsMTI-1b conferred H2O2 and ethanol tolerance to S. cerevisiae cells. The results indicate that heterologous expression of plant MT isoforms can enhance the tolerance of S. cerevisiae to multiple stresses.


Asunto(s)
Proteínas de Plantas/genética , Oryza/genética , Saccharomyces cerevisiae/metabolismo , Cadmio/metabolismo , Expresión Génica , Etanol/metabolismo , Peróxido de Hidrógeno/metabolismo , Metalotioneína/genética , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/genética , Estrés Oxidativo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Metalotioneína/metabolismo
8.
Braz. j. microbiol ; 47(2): 305-313, Apr.-June 2016. tab, graf
Artículo en Inglés | LILACS | ID: lil-780840

RESUMEN

Abstract Fourteen Trichoderma isolates were evaluated for their tolerance to two heavy metals, nickel and cadmium. Three isolates, MT-4, UBT-18, and IBT-I, showed high levels of nickel tolerance, whereas MT-4, UBT-18, and IBT-II showed better tolerance of cadmium than the other isolates. Under nickel stress, biomass production increased up to a Ni concentration of 60 ppm in all strains but then decreased as the concentrations of nickel were further increased. Among the nickel-tolerant isolates, UBT-18 produced significantly higher biomass upon exposure to nickel (up to 150 ppm); however, the minimum concentration of nickel required to inhibit 50% of growth (MIC50) was highest in IBT-I. Among the cadmium-tolerant isolates, IBT-II showed both maximum biomass production and a maximum MIC50 value in cadmium stress. As the biomass of the Trichoderma isolates increased, a higher percentage of nickel removal was observed up to a concentration of 40 ppm, followed by an increase in residual nickel and a decrease in biomass production at higher nickel concentrations in the medium. The increase in cadmium concentrations resulted in a decrease in biomass production and positively correlated with an increase in residual cadmium in the culture broth. Nickel and cadmium stress also influenced the sensitivity of the Trichoderma isolates to soil fungistasis. Isolates IBT-I and UBT-18 were most tolerant to fungistasis under nickel and cadmium stress, respectively.


Asunto(s)
Trichoderma/metabolismo , Cadmio/metabolismo , Níquel/metabolismo , Microbiología del Suelo , Trichoderma/aislamiento & purificación , Trichoderma/clasificación , Trichoderma/crecimiento & desarrollo , Biodegradación Ambiental , Cadmio/química , Cinética , Níquel/química
9.
Indian J Exp Biol ; 2013 Sept; 51(9): 758-763
Artículo en Inglés | IMSEAR | ID: sea-149380

RESUMEN

The cadaverine (Cad), an organic diamine was examined for its response on growth in salinity and metal stressed B. juncea cv RH-30 vis-à-vis compared the response of ammonium nitrate. The Cad (1 mM) application ameliorated the effect caused by salinity and metal stress on seed germination and plant growth. The plant growth recovery (dry biomass accumulation) was dependent on stress and diamine type. The higher growth recovery potential of Cad under both stresses was due to elevation in photosynthetic pigments, nitrate reductase activity and organic nitrogen as well as soluble protein, It is inferred that growth in stressed seedlings was mediated by Cad through lowering endogenous Cd/Pb and Na+/K+ level in leaf and shoot tissues.


Asunto(s)
Cadaverina/farmacología , Cadmio/metabolismo , Plomo/metabolismo , Planta de la Mostaza/efectos de los fármacos , Planta de la Mostaza/crecimiento & desarrollo , Planta de la Mostaza/fisiología , Nitrato-Reductasa/metabolismo , Nitrógeno/metabolismo , Fotosíntesis , Pigmentos Biológicos/metabolismo , Estrés Fisiológico
10.
Acta toxicol. argent ; 21(1): 33-49, jun. 2013. graf
Artículo en Español | LILACS | ID: lil-694583

RESUMEN

El cadmio (Cd) es un metal que se encuentra principalmente en la corteza terrestre y siempre se presenta en combinación con el zinc. Es ampliamente utilizado en la industria. Se considera un contaminante y es liberado al ambiente como subproducto de la extracción de cobre, hierro y zinc. La exposición al Cd puede producir una variedad de efectos adversos tanto en el humano como en los animales. Una vez absorbido se acumula en el organismo por tiempos largos. Dependiendo de la dosis, fuente y tipo de exposición puede dañar varios órganos como el hígado, riñón, pulmón, hueso, testículos y placenta. Los seres humanos están expuestos al Cd principalmente a través de la ingesta de alimentos, del humo del cigarro, así como del agua y aire contaminados con el metal. La entrada de Cd a las células no es uniforme en todos los sistemas y puede ser mediada por transporte pasivo o activo, o por canales de calcio. Se considera que uno de los mecanismos de toxicidad de este metal es debido, en parte, a las especies reactivas de oxígeno, las cuales pueden actuar como segundos mensajeros y por tanto alterar diferentes vías de señalización. Por todo lo expuesto el objetivo de esta revisión es analizar los efectos del Cd sobre la salud, así como sobre la respuesta celular y molecular.


Cadmium (Cd) is a metal found in the earth´s crust, always as part of several, mainly zinc-rich, ores. Cd is considered as an environmental pollutant, it is widely used in the industry. It coexists with other metals and its release into the environment is carried out in parallel with the release of copper, iron and zinc. Cd is known to have numerous undesirable effects on health in both humans and animals. Once absorbed, it is effciently retained in the body, where it accumulates throughout life. Depending on the dose, source and type of exposure it could damage several organs as the liver, kidney, lung, bones, testes and placenta. Impor-tant sources of human intoxication are food, cigarette smoke as well as contaminated water and air. Cd cell uptake is not uniform across all systems. This could be mediated by passive or active transport, or via calcium channels. It is known that the toxicity produced by this metal is due, in part to reactive oxygen species, which could act as second messengers that may alter different signaling cascades. The aim of this review is to analyze the effects of Cd on health, as well as on cellular and molecular response.


Asunto(s)
Intoxicación por Cadmio/genética , Cadmio/metabolismo , Cadmio/toxicidad , Metalotioneína , Estrés Oxidativo/genética
11.
Int. j. morphol ; 30(3): 1007-1012, Sept. 2012. ilus
Artículo en Inglés | LILACS | ID: lil-665516

RESUMEN

Metallothionein (MT) is a ubiquitous protein with a low molecular weight of 6-7 kDa weight and it was first identified in the kidney cortex of equines as a cadmium (Cd)-binding protein responsible for the natural accumulation of Cd in the tissue. The mammalian MT contains 61 to 68 amino acid residues, in which 18 to 23 cysteine residues are present. The expression of MT starts by binding of metal transcription factor-1 (MTF-1) to the regulative region of MT gene called metal responsive elements (MREs). The induction of MT through the MREs region can be initiated by several metal ions such as zinc (Zn), copper (Cu) and Cd. However, Zn is the only heavy metal which can reversibly and directly activate the DNA-binding activity of MTF-1. In mammals four types of MT are expressed and they are termed metallothionein-1 (MT1), metallothionein-2 (MT2), metallothionein-3 (MT3), and metallothionein-4 (MT4). MT1 and MT2 are expressed in almost all tissues while MT3 and MT4 are tissue-specific. MT is a key compound involved in the intracellular handling of a variety of essential and nonessential post-transitional metal ions. In order to the heavy metal binding ability of MT, it is suggested to play roles both in the intracellular fixation of essential trace elements Zn and Cu, in controlling the concentrations, and in neutralizing the harmful influences of exposure to toxic elements...


Metalotioneina (MT) es una proteína, con bajo peso molecular de kDa 6-7 y que fue primero identificada en la corteza renal de equinos como cadmio (Cd)-proteína responsable por la acumulación natural de Cd en los tejidos. La MT en mamíferos contiene 61 a 68 residuos de aminoácidos, de los cuales están presentes 18 a 23 residuos de cisteína. La expresión de MT se inicia por la unión del factor-1 de transcripción de metal (MTF-1) a la región reguladora del gen de la MT llamado elementos metálicos responsable (MREs). La inducción de MT a través de la región MREs puede ser iniciada por varios iones metálicos tales como zinc (Zn), cobre (Cu) y Cd. Sin embargo, el Zn es el único metal pesado que puede revertir y activar directamente la unión ADN de MTF-1. En los mamíferos se expresan cuatro tipos de MT y ellos se denominan metalotioneína-1 (MT1), metalotioneína-2 (MT2), metalotioneína-3 (MT3), y metalotioneína-4 (MT4). MT1 y MT2 se expresan en casi todos los tejidos mientras que MT3 y MT4 son tejido-específico. La MT es un compuesto clave implicado en la manipulación intracelular de una variedad de iones metálicos esenciales y no esenciales post-transicionales. Con el fin de evaluar la capacidad de unión de metales pesados de MT, se sugiere que éste desempeña ambos roles tanto en la fijación intracelular de trazas de elementos de Zn y Cu como en el control de las concentraciones, y neutralizando las influencias perjudiciales a la exposición de elementos tóxicos...


Asunto(s)
Humanos , Animales , Metalotioneína/fisiología , Metalotioneína/metabolismo , Cadmio/metabolismo , Regulación de la Expresión Génica , Mamíferos , Metalotioneína/clasificación , Zinc/metabolismo
12.
J Environ Biol ; 2007 Jul; 28(3): 655-62
Artículo en Inglés | IMSEAR | ID: sea-113572

RESUMEN

The Madagascar Periwinkle, Catharanthus roseus (L.) G. Don (a valued medicinal plant) was exposed to different concentrations ofheavymetals like, CdCl, and PbCl, with a view to observe their bioaccumulation efficiency. Germination was inhibited by both the heavy metals in the seeds previously imbibed in GA, and KNO, for 24 hr. EC50 (the effective concentration which inhibits root length by 50%) was recorded as 180 microM for CdCl2, and 50 microM for PbCl2. Both alpha-amylase and protease activity were reduced substantially on treatment of seeds with increasing concentrations of CdCl2, and PbCl2. Malondialdehyde (MDA) a product of lipoxigenase (LOX) activity also increased due to the treatment of both CdCl, and PbCl2. When two-months-old plants grown in normal soil were transferred to soils containing increasing amounts of these two heavy metals, senescence of lower leaves and extensive chlorosis were noticed after four days of transfer However, plants gradually acclimatized and after 20 days the chlorophyll content was almost comparable to normal. Plants receiving CdCl2 treatment (250 microg g(-1) and less) became acclimatized after two weeks and started normal growth. But PbCl2 of 432 microg g(-1) and less could not affect the plant growth throughout, after a preliminary shock was erased. In case of CdCl2 treatment, a stunted growth with reduced leaf area, reduced biomass and sterility were recorded after six months, while plants show normal growth and flowering in case of PbCl2 treatment. Total alkaloid was also found to be decreased in the roots of CdCl2 treated plants. No change was observed in case of PbCl2. GA3 treatments to the CdCl2 treated plants show internode elongation and increase in leaf area with relatively elongated leaves and thinning of stem diameter AAS analyses of leaves of treated plants exhibited 5-10% accumulation of cadmium, but there was no accumulation of lead at all.


Asunto(s)
Alcaloides/metabolismo , Biodegradación Ambiental/efectos de los fármacos , Cadmio/metabolismo , Catharanthus/efectos de los fármacos , Clorofila/metabolismo , Giberelinas/farmacología , Plomo/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Malondialdehído/metabolismo , Péptido Hidrolasas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Hojas de la Planta/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Contaminantes del Suelo/metabolismo , alfa-Amilasas/metabolismo
13.
J Environ Biol ; 2007 Jul; 28(3): 583-9
Artículo en Inglés | IMSEAR | ID: sea-113718

RESUMEN

Growth, lipid peroxidation, different antioxidative enzymes and metal accumulation were studied in Lemna polyrrhiza treated with different concentrations (1-40 ppm) of CdSO4. The growth of the plant was slightly enhanced with 1 ppm, while higher concentrations retarted growth and multiplication of fronds, the effect being concentration and dose dependant. Increase in malondialdehyde content was insignificant after the first week but a prolonged exposure led to significant (p < 0.05) increase of about 38% and 45% over the control in 20 and 30 ppm, respectively after four weeks. Catalase (EC 1.11.1.6; CAT) activity increased at low concentration, but it declined to 42% and 54% at 40 ppm after 6 and 30 days, respectively Superoxide dismutase (EC 1.15.1.1; SOD), ascorbate peroxidase (EC 1.11.1.11;APx) and glutathione reductase (EC 1.6.4.2) increased at both low as well at high concentrations, but a prolonged exposure to high concentration of Cd (40 ppm) led to significant (p < 0.05) decline in the mean activities of these antioxidant enzymes. Accumulation of Cd in biomass was concentration and time dependant However at high concentration of 40 ppm, Cd accumulation did not increase significantly (p < 0.05) with time. Increased activities of antioxidant enzymes in Cd treated plants suggest that metal tolerance in L. polyrrhiza might be associated to the changes of antioxidant enzymatic activities.


Asunto(s)
Antioxidantes/metabolismo , Araceae/efectos de los fármacos , Cadmio/metabolismo , Catalasa/metabolismo , Glutatión Reductasa/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Malondialdehído/metabolismo , Estrés Oxidativo , Peroxidasas/metabolismo , Superóxido Dismutasa/metabolismo
14.
J Environ Biol ; 2006 Oct; 27(4): 645-52
Artículo en Inglés | IMSEAR | ID: sea-113306

RESUMEN

The toxicity and accumulation of heavy metals, cadmium (Cd) and lead (Pb) in aquatic fern, Salvinia cucullata were studied. Plants were cultured in Hoagland's medium which was supplemented with 0.5,1,2, and 4 mg/l of Cd and 5, 10, and 40 mg/l of Pb and were separately harvested after 2,4,6, and 8 days. The toxicity symptoms of Cd and Pb to S. cucullata showed chlorosis on leaves. There were significant derceases in the relative growth, biomass productivity and total chlorophyll content when the exposure time and concentration were increased. The accumulation study showed the significant increases of both metals when the exposure time and concentration were increased. The roots of S. cucullata had higher Cd and Pb contents than leaves suggesting that the metals were bound to the root cells and were partially transported to the leaves.


Asunto(s)
Transporte Biológico , Biomasa , Cadmio/metabolismo , Clorofila/metabolismo , Helechos/efectos de los fármacos , Plomo/metabolismo , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Contaminantes Químicos del Agua/metabolismo , Purificación del Agua
15.
J Environ Biol ; 2006 Jul; 27(3): 597-9
Artículo en Inglés | IMSEAR | ID: sea-113619

RESUMEN

Heavy metal in soil samples and in washed and unwashed samples of Telfaria occidentalis (ugwu) and Talinum triangulare (waterleaf) cultivated on the bank of river Ribila in Odo-nla village were determined. The soil was moderately polluted with cadmium when compared with Federal Environmental Protection Agency standards. The difference between the unwashed and washed plant samples revealed that metal pollutants exist as superficial contaminants on the foliage surface which is the edible portion and if the foliage portion is washed thoroughly it may be safe for dietary consumption. There is no doubt that continuous discharge of effluent and gaseous emissions from the industries located in this area and dumping of domestic wastes into the river may lead to higher concentrations of these heavy metals in the soil and in the tissue of the leafy vegetables cultivated on the river bank over time. This can eventually lead to pollution of the soil and the cultivated plants, which are ready source of food for the people and other organisms in the food chain.


Asunto(s)
Cadmio/metabolismo , Cromo/metabolismo , Plomo/metabolismo , Nigeria , Plantas/metabolismo , Ríos
16.
J Environ Biol ; 2006 May; 27(2 Suppl): 311-6
Artículo en Inglés | IMSEAR | ID: sea-113631

RESUMEN

Phytotoxicity, microbial activity, plant uptake and microbial degradation were examined using Rumex crispus in TNT and/or cadmium contaminated columns (TNT: 100 mg/kg of soil and Cd: 10 mg/kg of soil). The growth of plants was significantly inhibited by TNT, but not by Cd. The microbial activity was highly increased by plant root growth, decreased by Cd, and slightly reduced by TNT. The plant uptake of Cd was relatively well in Cd-contaminated column, but lowered by TNT in TNT+Cd-contaminated column. The microbial degradation of TNT occurred much faster in planted columns than in unplanted columns with minor effect of Cd (less 2-ADNT was produced). Therefore, it may be effective to treat TNT first and then Cd using phytoremediation in the TNT plus Cd contaminated sites.


Asunto(s)
Cadmio/metabolismo , Restauración y Remediación Ambiental/métodos , Plantas/efectos de los fármacos , Microbiología del Suelo , Contaminantes del Suelo/metabolismo , Trinitrotolueno/metabolismo
17.
Indian J Exp Biol ; 2006 Jan; 44(1): 73-6
Artículo en Inglés | IMSEAR | ID: sea-59973

RESUMEN

Fungi including Aspergillus and Penicillium, resistant to Ni2+, Cd2+, and Cr6+ were isolated from soil receiving long-term application of municipal wastewater mix with untreated industrial effluents of Aligarh, India. Metal tolerance in term of minimum inhibitory concentration (MIC) was 125-550 microg/ml for Cd, 300-850 microg/ml for Ni and 300-600 microg/ml for Cr against test fungi. Two isolates, Aspergillus niger and Penicillium sp. were tested for their Cr, Ni and Cd biosorption potential using alkali treated, dried and powdered mycelium. Biosorption experiment was conducted in 100 ml of solution at three initial metal concentrations i.e., 2, 4 and 6 mM with contact time (18 hr) and pretreated fungal biomass (0.1g) at 25 degrees C. Biosorption of all metals was found higher at 4 mM initial metal concentration as compared to biosorption at 2 and 6 mM concentrations. At 4 mM initial metal concentration, chromium biosorption was 18.05 and 19.3 mg/g of Aspergillus and Penicillium biomasses, respectively. Similarly, biosorption of Cd and Ni ions was also maximum at 4 mM initial metal concentration by Aspergillus (19.4 mg/g for Cd and 25.05 mg/g of biomass for Ni) and Penicillium (18.6 mg/g for Cd and 17.9 mg/g of biomass for Ni). In general, biosorption of metal was influenced by initial metal concentration and type of the test fungi. The results indicated that fungi of metal contaminated soil have high level of metal tolerance and biosorption properties.


Asunto(s)
Adsorción , Aspergillus niger/efectos de los fármacos , Cadmio/metabolismo , Cromo/metabolismo , Metales Pesados/metabolismo , Níquel/metabolismo , Penicillium/efectos de los fármacos , Microbiología del Suelo , Contaminantes del Suelo/metabolismo , Soluciones , Contaminantes Químicos del Agua/metabolismo
18.
Journal of Korean Medical Science ; : 445-451, 2006.
Artículo en Inglés | WPRIM | ID: wpr-47135

RESUMEN

Cadmium is known to exert toxic effects on multiple organs, including the testes. To determine if alpha-tocopherol, an antioxidant, could protect testicular tissues and spermatogenesis from the toxic effects of cadmium, six-week old male Sprague-Dawley rats were randomized to receive cadmium at doses of 0 (control), 1, 2, 4 or 8 mg/kg by the intraperitoneal route (Group A) or alpha-tocopherol for 5 days before being challenged with cadmium (Group B) in an identical dose-dependent manner. When both groups received cadmium at 1 mg/kg, there were no changes in testicular histology relative to controls. When Group A received cadmium at 2 mg/kg, undifferentiated spermatids and dead Sertoli cells increased in the seminiferous tubules while interstitial cells decreased and inflammatory cells increased in the interstitial tissues. On flow cytometric analysis, the numbers of elongated spermatids (M1) and round spermatids (M2) decreased while 2c stage cells (M3, diploid) increased. In contrast, when Group B received cadmium at 2 mg/kg, the histological insults were reduced and the distribution of the germ cell population remained comparable to controls. However, alpha-tocopherol had no protective effects with higher cadmium doses of 4 and 8 mg/kg. These findings indicate that alpha-tocopherol treatment can protect testicular tissue and preserve spermatogenesis from the detrimental effects of cadmium but its effectiveness is dependent on the dose of cadmium exposed.


Asunto(s)
Ratas , Masculino , Animales , alfa-Tocoferol/farmacología , Testículo/efectos de los fármacos , Espermatogénesis/efectos de los fármacos , Ratas Sprague-Dawley , Inflamación , Citometría de Flujo , Relación Dosis-Respuesta a Droga , Intoxicación por Cadmio/patología , Cadmio/metabolismo , Antioxidantes/farmacología
19.
Electron. j. biotechnol ; 7(3): 14-15, Dec. 2004. ilus, tab, graf
Artículo en Inglés | LILACS | ID: lil-448771

RESUMEN

Environmental protection requires the use of natural products instead of chemicals to minimize pollution. This investigation studies the use of a non-useful plant material as naturally occurring biosorbents for the removal of cationic pollutants in wastewater. The effect of pH on the sorption of Pb2+ and Cd2+ ion onto Caladium bicolor corm biomass was investigated. The experimental results have been analysed in terms of Langmuir, Freundlich and Flory-Huggins isotherms. The data showed that the maximum pH (pHmax) for efficient sorption of Pb2+ was 7.0 and for Cd2+ 5.0. Evaluation using Langmuir equation gave the monolayer sorption capacity as 88.50 mg/g and 65.50 mg/g at the respective pHmax for Pb2+ and Cd2+. Surface characterization of acid and base treated C. bicolor biomass indicates a physiosorption as the predominant mechanism for the sorption process. The thermodynamic assessment of the metal ion - Caladium bicolor biomass system indicates the feasibility and spontaneous nature of the process.


Asunto(s)
Cadmio/metabolismo , Concentración de Iones de Hidrógeno , Plantas/metabolismo , Plomo/metabolismo , Adsorción , Biomasa , Metales Pesados/metabolismo , Soluciones , Temperatura , Termodinámica , Purificación del Agua/métodos
20.
Electron. j. biotechnol ; 7(1): 30-37, Apr. 2004. tab, graf
Artículo en Inglés | LILACS | ID: lil-363995

RESUMEN

Biosorption experiments for Cr(VI), Cu(II), Cd(II) and Ni(II) were investigated in this study using nonliving biomass of different Pseudomonas species. The applicability of the Langmuir and Freundlich models for the different biosorbent was tested. The coefficient of determination (R²) of both models were mostly greater than 0.9. In case of Ni(II) and Cu(II), their coefficients were found to be close to one. This indicates that both models adequately describe the experimental data of the biosorption of these metals. The maximum adsorption capacity was found to be the highest for Ni followed by Cd(II), Cu(II) and Cr(VI). Whereas the Freundlich constant k in case of Cd(II) was found to be greater than the other metals. Maximum Cr(VI) removal reached around 38 percent and its removal increased with the increase of Cr(VI) influent. Cu(II) removal was at its maximum value in presence of Cr(VI) as a binary metal, which reached 93 percent of its influent concentration. Concerning to Cd(II) and Ni(II) similar removal ratios were obtained, since it was ranged between 35 to 88 percent and their maximum removal were obtained in the case of individual Cd(II) and Ni(II).


Asunto(s)
Metales Pesados/metabolismo , Pseudomonas/metabolismo , Adsorción , Biomasa , Cadmio/metabolismo , Cobre/metabolismo , Cromo/metabolismo , Modelos Biológicos , Níquel/metabolismo , Purificación del Agua/métodos , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA