Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
Chinese Journal of Burns ; (6): 196-200, 2023.
Artículo en Chino | WPRIM | ID: wpr-971170

RESUMEN

Hypertrophic scar (HS) affects the function and beauty of patients, and brings a heavy psychological burden to patients. However, the specific pathogenesis mechanism of HS in molecular biology level is not yet clear, and this disease is still one of the clinical diseases difficult to prevent and cure. MicroRNA (miR) is a family of single-stranded endogenous noncoding RNAs that can regulate gene expression. The abnormal transcription of miR in hypertrophic scar fibroblasts can affect the transduction and expression of downstream signal pathway or protein, and the exploration of miR and its downstream signal pathway and protein helps deeply understand the occurrence and development mechanism of scar hyperplasia. This article summarized and analyzed how miR and multiple signal pathways involve in the formation and development of HS in recent years, and further outlined the interaction between miR and target genes in HS.


Asunto(s)
Humanos , MicroARNs/genética , Cicatriz Hipertrófica/genética , Fibroblastos , Hiperplasia
2.
Biol. Res ; 50: 22, 2017. graf
Artículo en Inglés | LILACS | ID: biblio-950873

RESUMEN

BACKGROUND: Hypertrophic scarring (HS) is a severe disease, and results from unusual wound healing. Col1A1 could promote the hypertrophic scar formation, and the expression of Col1A1 in HS tissue was markedly higher than that in the normal. In present study, we aimed to identify miRNAs as post-transcriptional regulators of Col1A1 in HS. METHODS: MicroRNA-98 was selected as the key miRNA comprised in HS. The mRNA levels of miR-98 in HS tissues and the matched normal skin tissues were determined by qRT-PCR. MTT and flow cytometry were used to determine the influence of miR-98 on cell proliferation and apoptosis of HSFBs, respectively. Col1A1 was found to be the target gene of miR-98 using luciferase reporter assay. Luciferase assay was performed to determine the relative luciferase activity in mimic NC, miR-98 mimic, inhibitor NC and miR-98 inhibitor with Col1A13'-UTR wt or Col1A13'-UTR mt reporter plasmids. The protein expression of Col1A1 in HSFBs after transfection with mimic NC, miR-98 mimic, inhibitor NC and miR-98 inhibitor were determined by western blotting. RESULTS: The mRNA level of miR-98 in HS tissues was much lower than that in the control. Transfection of HSFBs with a miR-98 mimic reduced the cell viability of HSFBs and increased the apoptosis portion of HSFBs, while inhibition of miR-98 increased cell viability and decreased apoptosis portion of HSFBs. miR-98 inhibitor increased the relative luciferase activity significantly when cotransfected with the Col1A1-UTR reporter plasmid, while the mutant reporter plasmid abolished the miR-98 inhibitor-mediated increase in luciferase activity. Western blotting revealed that overex-pression of miR-98 decreased the expression of Col1A1. CONCLUSIONS: Overexpression of miR-98 repressed the proliferation of HSFBs by targeting Col1A1.


Asunto(s)
Humanos , Procesamiento Postranscripcional del ARN/genética , Apoptosis/genética , Colágeno Tipo I/metabolismo , MicroARNs/genética , Fibroblastos/metabolismo , Estudios de Casos y Controles , Regulación hacia Abajo , Cicatriz Hipertrófica/genética , Cicatriz Hipertrófica/metabolismo , Colágeno Tipo I/genética , MicroARNs/metabolismo , Proliferación Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA