Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Añadir filtros








Intervalo de año
1.
Clinics ; 68(6): 825-833, jun. 2013. graf
Artículo en Inglés | LILACS | ID: lil-676926

RESUMEN

OBJECTIVES: MiRNAs are intrinsic RNAs that interfere with protein translation. Few studies on the synergistic effects of miRNAs have been reported. Both miR-424 and miR-381 have been individually reported to be involved in carcinogenesis. They share a common putative target, WEE1, which is described as an inhibitor of G2/M progression. Here, we studied the synergistic effects of miR-424 and miR-381 on renal cancer cells. METHODS: The viability of 786-O cells was analyzed after transfection with either a combination of miR-424 and miR-381 or each miRNA alone. We investigated cell cycle progression and apoptosis with flow cytometry. To confirm apoptosis and the abrogation of G2/M arrest, we determined the level of pHH3, which is an indicator of mitosis, and caspase-3/7 activity. The expression levels of WEE1, Cdc25, γH2AX, and Cdc2 were manipulated to investigate the roles of these proteins in the miRNA-induced anti-tumor effects. To verify that WEE1 was a direct target of both miR-424 and miR-381, we performed a dual luciferase reporter assay. RESULTS: We showed that the combination of these miRNAs synergistically inhibited proliferation, abrogated G2/M arrest, and induced apoptosis. This combination led to Cdc2 activation through WEE1 inhibition. This regulation was more effective when cells were treated with both miRNAs than with either miRNA alone, indicating synergy between these miRNAs. WEE1 was verified to be a direct target of each miRNA according to the luciferase reporter assay. CONCLUSIONS: These data clearly demonstrate that these two miRNAs might synergistically act as novel modulators of tumorigenesis by down-regulating WEE1 expression in renal cell cancer cells. .


Asunto(s)
Humanos , Carcinoma de Células Renales/genética , Proteínas de Ciclo Celular/metabolismo , Ciclina B/metabolismo , Neoplasias Renales/genética , MicroARNs/farmacología , Proteínas Nucleares/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Western Blotting , Línea Celular Tumoral , Fenómenos Fisiológicos Celulares , Transformación Celular Neoplásica , Regulación hacia Abajo , Citometría de Flujo , Regulación Neoplásica de la Expresión Génica , MicroARNs/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Tiempo , Regulación hacia Arriba
2.
Yonsei Medical Journal ; : 708-716, 2010.
Artículo en Inglés | WPRIM | ID: wpr-53355

RESUMEN

PURPOSE: Oral squamous carcinoma (OSCC) cells exhibit resistance to chemotherapeutic agent-mediated apoptosis in the late stage of malignancy. Increased levels of heat shock proteins 70 (HSP70) in cancer cells are known to confer resistance to apoptosis. Since recent advances in the understanding of bacterial toxins have produced new strategies for the treatment of cancers, we investigated the effect of Pseudomonas aeruginosa exotoxin A (PEA) on HSP70 expression and induction of apoptosis in chemoresistant OSCC cell line (YD-9). MATERIALS AND METHODS: The apoptotic effect of PEA on chemoresistant YD-9 cells was confirmed by MTT, Hoechst and TUNEL stains, DNA electrophoresis, and Western blot analysis. RESULTS: While YD-9 cells showed high resistance to chemotherapeutic agents such as etoposide and 5-fluorouraci (5-FU), HSP70 antisense oligonucelotides sensitized chemoresistant YD-9 cells to etoposide and 5-FU. On the other hand, PEA significantly decreased the viability of YD-9 cells by deteriorating the HSP70-relating protecting system through inhibition of HSP70 expression and inducing apoptosis in YD-9 cells. Apoptotic manifestations were evidenced by changes in nuclear morphology, generation of DNA fragmentation, and activation of caspases. While p53, p21, and E2F-1 were upregulated, cdk2 and cyclin B were downregulated by PEA treatment, suggesting that PEA caused cell cycle arrest at the G2/M checkpoint. CONCLUSION: Therefore, these results indicate that PEA reduced the chemoresistance through inhibition of HSP70 expression and also induced apoptosis in chemoresistant YD-9 cells.


Asunto(s)
Humanos , ADP Ribosa Transferasas/farmacología , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Toxinas Bacterianas/farmacología , Western Blotting , Carcinoma de Células Escamosas/tratamiento farmacológico , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Cromatografía Liquida , Ciclina B/metabolismo , Quinasa 2 Dependiente de la Ciclina/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Factor de Transcripción E2F1/metabolismo , Electroforesis , Exotoxinas/farmacología , Proteínas HSP70 de Choque Térmico/genética , Etiquetado Corte-Fin in Situ , Neoplasias de la Boca/tratamiento farmacológico , Espectrometría de Masas en Tándem , Proteína p53 Supresora de Tumor/metabolismo , Factores de Virulencia/farmacología
3.
Experimental & Molecular Medicine ; : 151-160, 2009.
Artículo en Inglés | WPRIM | ID: wpr-76615

RESUMEN

Resveratrol has been reported to possess cancer preventive properties. In this study, we analyzed anti-tumor activity of a newly synthesized resveratrol analog, cis-3,4',5-trimethoxy-3'-hydroxystilbene (hereafter called 11b) towards breast and pancreatic cancer cell lines. 11b treatments reduced the proliferation of human pancreatic and breast cancer cells, arrested cells in the G2/M phase, and increased the percentage of cells in the subG1/G0 fraction. The 11b treatments also increased the total levels of mitotic checkpoint proteins such as BubR1, Aurora B, Cyclin B, and phosphorylated histone H3. Mechanistically, 11b blocks microtubule polymerization in vitro and it disturbed microtubule networks in both pancreatic and breast cancer cell lines. Computational modeling of the 11b-tubulin interaction indicates that the dimethoxyphenyl group of 11b can bind to the colchicine binding site of tubulin. Our studies show that the 11b treatment effects occur at lower concentrations than similar effects associated with resveratrol treatments and that microtubules may be the primary target for the observed effects of 11b. These studies suggest that 11b should be further examined as a potentially potent clinical chemotherapeutic agent for treating pancreatic and breast cancer patients.


Asunto(s)
Humanos , Antineoplásicos/farmacología , Sitios de Unión , Neoplasias de la Mama , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Colchicina/química , Ciclina B/metabolismo , Fase G2/efectos de los fármacos , Microtúbulos/efectos de los fármacos , Modelos Moleculares , Neoplasias Pancreáticas , Proteínas Serina-Treonina Quinasas/metabolismo , Estilbenos/farmacología , Tubulina (Proteína)/metabolismo
4.
Yonsei Medical Journal ; : 694-700, 2007.
Artículo en Inglés | WPRIM | ID: wpr-96525

RESUMEN

PURPOSE: Cell cycle progression is regulated by interactions of specific cyclins and cyclin dependent kinases (CDKs) at the G1-S and G2-M checkpoints and cell cycle deregulation plays a major role in carcinogenesis of human cancers. PATIENTS AND METHODS: To investigate the role of cell cycle regulators in the pathogenesis and progression of human gastric cancers, 23 cases of gastric carcinomas were examined for the expression of cyclin B1, p34cdc2, p27(Kip1) and p53 by immunohistochemical methods, and gene expression was correlated with various clinicopathologic findings. RESULTS: Out of 23 cases studied, cyclin B1 was diffusely expressed in 20 cases (87.0%), p34cdc2 in 14 cases (60.9%) and p53 in 12 cases (52.2%), whereas in normal gastric tissues, cyclin B1 and p34cdc2 were weakly expressed and p53 was not expressed. In contrast, p27(Kip1) was expressed in only 8.7% of gastric carcinomas compared with 78.3% of normal gastric tissues. There was correlation between the expression of cyclin B1 and expression of p34cdc2 (p=0.002), between the expression of cyclin B1 and loss of p27(Kip1) (p=0.025), and between the expression of p34cdc2 and loss of p27(Kip1) (p=0.065). In addition, expression of cyclin B1 was correlated with regional lymph node metastasis (p=0.032). CONCLUSION: Our results indicate that cyclin B1 and p34cdc2 are involved in the genesis or progression of gastric cancers. Furthermore, overexpression of cyclin B1 may play an important role in lymph node metastatic potential of gastric cancer. Thus, abnormal expression of cyclin B1 and CDKs, overexpression of p53 and loss of p27(Kip1) expression may play important roles in human gastric carcinogenesis.


Asunto(s)
Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proteína Quinasa CDC2/metabolismo , Ciclina B/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Pronóstico , Neoplasias Gástricas/diagnóstico , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA