Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros








Intervalo de año
1.
Journal of Zhejiang University. Science. B ; (12): 339-344, 2022.
Artículo en Inglés | WPRIM | ID: wpr-929063

RESUMEN

Cucurbitaceae is an important family of flowering plants containing multiple species of important food plants, such as melons, cucumbers, squashes, and pumpkins. However, a highly efficient genetic transformation system has not been established for most of these species (Nanasato and Tabei, 2020). Watermelon (Citrullus lanatus), an economically important and globally cultivated fruit crop, is a model species for fruit quality research due to its rich diversity of fruit size, shape, flavor, aroma, texture, peel and flesh color, and nutritional composition (Guo et al., 2019). Through pan-genome sequencing, many candidate loci associated with fruit quality traits have been identified (Guo et al., 2019). However, few of these loci have been validated. The major barrier is the low transformation efficiency of the species, with only few successful cases of genetic transformation reported so far (Tian et al., 2017; Feng et al., 2021; Wang JF et al., 2021; Wang YP et al., 2021). For example, Tian et al. (2017) obtained only 16 transgenic lines from about 960 cotyledon fragments, yielding a transformation efficiency of 1.67%. Therefore, efficient genetic transformation could not only facilitate the functional genomic studies in watermelon as well as other horticultural species, but also speed up the transgenic and genome-editing breeding.


Asunto(s)
Sistemas CRISPR-Cas , Citrullus/genética , Cucurbitaceae/genética , Edición Génica , Fitomejoramiento , Transformación Genética
2.
Journal of Zhejiang University. Science. B ; (12): 596-609, 2018.
Artículo en Inglés | WPRIM | ID: wpr-1010397

RESUMEN

In plants, lipoxygenases (LOXs) play a crucial role in biotic and abiotic stresses. In our previous study, five 13-LOX genes of oriental melon were regulated by abiotic stress but it is unclear whether the 9-LOX is involved in biotic and abiotic stresses. The promoter analysis revealed that CmLOX09 (type of 9-LOX) has hormone elements, signal substances, and stress elements. We analyzed the expression of CmLOX09 and its downstream genes-CmHPL and CmAOS-in the leaves of four-leaf stage seedlings of the oriental melon cultivar "Yumeiren" under wound, hormone, and signal substances. CmLOX09, CmHPL, and CmAOS were all induced by wounding. CmLOX09 was induced by auxin (indole acetic acid, IAA) and gibberellins (GA3); however, CmHPL and CmAOS showed differential responses to IAA and GA3. CmLOX09, CmHPL, and CmAOS were all induced by hydrogen peroxide (H2O2) and methyl jasmonate (MeJA), while being inhibited by abscisic acid (ABA) and salicylic acid (SA). CmLOX09, CmHPL, and CmAOS were all induced by the powdery mildew pathogen Podosphaera xanthii. The content of 2-hexynol and 2-hexenal in leaves after MeJA treatment was significantly higher than that in the control. After infection with P. xanthii, the diseased leaves of the oriental melon were divided into four levels-levels 1, 2, 3, and 4. The content of jasmonic acid (JA) in the leaves of levels 1 and 3 was significantly higher than that in the level 0 leaves. In summary, the results suggested that CmLOX09 might play a positive role in the response to MeJA through the hydroperoxide lyase (HPL) pathway to produce C6 alcohols and aldehydes, and in the response to P. xanthii through the allene oxide synthase (AOS) pathway to form JA.


Asunto(s)
Ácido Abscísico , Acetatos/química , Aldehído-Liasas/metabolismo , Aldehídos/química , Cucurbitaceae/genética , Ciclopentanos/química , Sistema Enzimático del Citocromo P-450/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Hormonas/metabolismo , Peróxido de Hidrógeno/metabolismo , Oxidorreductasas Intramoleculares/metabolismo , Lipooxigenasa/metabolismo , Oxilipinas/química , Hojas de la Planta/genética , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas , Ácido Salicílico/química , Plantones/metabolismo , Transducción de Señal , Estrés Fisiológico , Transgenes
3.
An. acad. bras. ciênc ; 83(4): 1421-1434, Dec. 2011. graf, tab
Artículo en Inglés | LILACS | ID: lil-607439

RESUMEN

The objectives of this study were to determine the importance of simple and complex components of the interaction genotype × environment and to evaluate the adaptability and stability of Gália melon hybrids. Nine hybrids were tested in twelve environments of Rio Grande Norte State from 2000 to 2001. The experiments were carried out in a randomized complete block design with three replications. The statistical methods of Toler and Burrows, Wricke and AMMI (Additive Main effect and Multiplicative Interaction) were used to study the adaptability and stability. The complex component is responsible for most of the genotype × environment interaction for the yield and content of solids soluble of fruits. The environments associated with Mossoró and Assu municipalities are the most suitable to evaluate melon hybrids in the state. The hybrid DRG 1537 was the most likely to be grown in the Agro-industrial Complex Mossoró-Assu due to its stability, high productivity and high content of soluble solids.


Os objetivos deste estudo foram determinar a importância das componentes simples e complexa da interação genótipo × ambiente e avaliar a adaptabilidade e estabilidade de híbridos de melão Gália. Nove híbridos foram testados em doze ambientes do Estado do Rio Grande Norte no período de 2000 a2001. Os experimentos foram conduzidos em blocos completos casualizados com três repetições. Os métodos estatísticos de Toler e Burrows, Wricke e AMMI (Additive Main effect and Multiplicative Interaction) foram usados para estudar a adaptabilidade e estabilidade. A componente complexa é responsável pela maior parte da interação genótipo × ambiente para a produtividade e teor de sólidos solúveis dos frutos. Os ambientes associados com Mossoró e Assu são os mais adequados para a avaliação de melão híbrido. O híbrido DRG1537 é o mais promissor para o cultivo no Complexo Agro-industrial Mossoró-Assu, devido à sua estabilidade, alta produtividade e alto teor de sólidos solúveis.


Asunto(s)
Adaptación Fisiológica/fisiología , Quimera/genética , Cucurbitaceae/genética , Brasil , Quimera/fisiología , Cucurbitaceae/fisiología , Genotipo , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA