Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Braz. J. Pharm. Sci. (Online) ; 59: e21555, 2023. graf
Artículo en Inglés | LILACS | ID: biblio-1439494

RESUMEN

ABSTRACT Positron emission tomography (PET) is a non-invasive nuclear imaging technique that uses radiotracers to track cell activity. The radiopharmaceutical 18F-fluoro-2-deoxyglucose ([18F] FDG) is most commonly used in nuclear medicine for the diagnosis of various diseases, including stroke. A stroke is a serious condition with high mortality and morbidity rates. Rosmarinic acid (RA) is a promising therapeutic agent that exerts neuroprotective effects against various neurological diseases. Therefore, this study aimed to evaluate the applicability of [18F]FDG/PET for investigating the neuroprotective effects of RA in case of a global stroke model in mice. The [18F]FDG/PET technique facilitates the observation of ischemia and reperfusion injuries in the brain. Moreover, the recovery of glucose metabolism in three specific brain regions, the striatum, superior colliculus, and inferior colliculus, was observed after preconditioning with RA. It was concluded that the [18F]FDG/PET technique may be useful for stroke diagnosis and the assessment of treatment response. In addition, a long-term longitudinal study using biochemical analysis in conjunction with functional imaging may provide further conclusive results regarding the effect of RA on cerebral ischemia.


Asunto(s)
Animales , Masculino , Ratones , Accidente Cerebrovascular/patología , Tomografía de Emisión de Positrones/instrumentación , Isquemia Encefálica/patología , Fármacos Neuroprotectores/agonistas , Radiofármacos/farmacología
2.
Braz. J. Pharm. Sci. (Online) ; 58: e20942, 2022. graf
Artículo en Inglés | LILACS | ID: biblio-1420449

RESUMEN

Abstract In the last decades, ferroptosis and its relationship with Parkinson's disease have gained significant attention. Compounds that affect ferroptosis and iron-dependent pathways in particular, have possible candidates for study in this context.Sinapic acid is an iron-chelator and high antioxidant bioactive phenolic acid. Its neuroprotective action, due to the antioxidant capacity, has been shown in several experimental models.However, the relationship between iron and antioxidant actions is still misunderstood and therefore, in the current study, we tried to investigate the effects of sinapic acid in rotenone-induced Parkinson's disease with the aspect of ferroptosis and iron-dependent alterations.The Parkinson's disease model was induced by a single dose intrastriatal and intrategmental rotenone (5µg/µl) injection.Sinapic acid (30mg/ kg) was orally administered during a 28-day period after the Parkinson's disease model was validated.Our results demonstrated that sinapic acid treatment attenuated rotenone-induced increase of serum transferrin and iron levels.Furthermore, sinapic acid inhibited rotenone-induced heme oxygenase-1(HO-1) increase and decrease of glutathione peroxidase-4 (GPx-4) levels in brain tissue. Also, sinapic acid treatment decreased motor impairment, likely as a result of the ameliorative effects on the tyrosine hydroxylase immunoreactivity loss after the rotenone insult.Our study suggests that the iron regulatory role of sinapic acid possibly plays a role in the protective effect on rotenone-induced neuronal damage.


Asunto(s)
Animales , Masculino , Ratas , Rotenona/efectos adversos , Fármacos Neuroprotectores/agonistas , Hierro/efectos adversos , Ferroptosis
3.
Journal of Korean Medical Science ; : 96-102, 2002.
Artículo en Inglés | WPRIM | ID: wpr-87471

RESUMEN

Cyclosporin A is used to treat patients with immune-mediated diseases, chronic diseases requiring organ transplantation, or malignancies. These conditions often require higher cyclosporin A doses, which may be toxic to the central nervous system. Fentanyl is also used in clinical conditions that have a risk of hypoxic neurosusceptiblity, which suggests that the drug may be a neuroprotective agonist against brain ischemic injury. Fentanyl is an opioid agonist and appears to play an important role in regulating the excitability of the hippocampus under electroconvulsion. In this study, the effects of fentanyl on modulating cyclosporin A-induced neurotoxicity was investigated. Treatment with 3 micrometer of cyclosporin A was found to reduce the electroconvulsive activity threshold. Fifty ng/mL of fentanyl reduced the electroconvulsive activity, and 1 micrometer of DAGO ([D-Ala2, N-Me-Phe4, Gly-ol]-enkephalin) also decreased the electroconvulsive activity. Fifty ng/mL of fentanyl was also found to reduce cyclosporin A-induced electroconvulsive activity. Although cyclosporin A neurotoxicity may be observed in various conditions, the opioid effect of neuroprotection may be involved in an interrelated mechanism. The exogenous opioid agonist suppressed cyclosporin A-induced electroconvulsive activity. Furthermore, there may be a functional anticonvulsant effect on cyclosporin A-induced neurotoxicity with an increased opioid agonist concentration.


Asunto(s)
Animales , Femenino , Ratas , Analgésicos Opioides/farmacología , Técnicas de Cultivo , Ciclosporina/farmacología , Relación Dosis-Respuesta a Droga , Electrofisiología , Encefalina Ala(2)-MeFe(4)-Gli(5)/farmacología , Fentanilo/farmacología , Hipocampo/efectos de los fármacos , Fármacos Neuroprotectores/agonistas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA