Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
Asian Journal of Andrology ; (6): 296-308, 2023.
Artículo en Inglés | WPRIM | ID: wpr-981952

RESUMEN

A complete proteomics study characterizing active androgen receptor (AR) complexes in prostate cancer (PCa) cells identified a diversity of protein interactors with tumorigenic annotations, including known RNA splicing factors. Thus, we chose to further investigate the functional role of AR-mediated alternative RNA splicing in PCa disease progression. We selected two AR-interacting RNA splicing factors, Src associated in mitosis of 68 kDa (SAM68) and DEAD (Asp-Glu-Ala-Asp) box helicase 5 (DDX5) to examine their associative roles in AR-dependent alternative RNA splicing. To assess the true physiological role of AR in alternative RNA splicing, we assessed splicing profiles of LNCaP PCa cells using exon microarrays and correlated the results to PCa clinical datasets. As a result, we were able to highlight alternative splicing events of clinical significance. Initial use of exon-mini gene cassettes illustrated hormone-dependent AR-mediated exon-inclusion splicing events with SAM68 or exon-exclusion splicing events with DDX5 overexpression. The physiological significance in PCa was investigated through the application of clinical exon array analysis, where we identified exon-gene sets that were able to delineate aggressive disease progression profiles and predict patient disease-free outcomes independently of pathological clinical criteria. Using a clinical dataset with patients categorized as prostate cancer-specific death (PCSD), these exon gene sets further identified a select group of patients with extremely poor disease-free outcomes. Overall, these results strongly suggest a nonclassical role of AR in mediating robust alternative RNA splicing in PCa. Moreover, AR-mediated alternative spicing contributes to aggressive PCa progression, where we identified a new subtype of lethal PCa defined by AR-dependent alternative splicing.


Asunto(s)
Humanos , Masculino , Empalme Alternativo , Línea Celular Tumoral , ARN Helicasas DEAD-box/metabolismo , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Próstata/patología , Receptores Androgénicos/metabolismo , Factores de Empalme de ARN/metabolismo
2.
Journal of Southern Medical University ; (12): 1013-1018, 2022.
Artículo en Chino | WPRIM | ID: wpr-941034

RESUMEN

OBJECTIVE@#To construct an adenovirus vector expressing artificial splicing factor capable of regulating alternative splicing of Yap1 in cardiomyocytes.@*METHODS@#The splicing factors with different sequences were constructed against Exon6 of YAP1 based on the sequence specificity of Pumilio1. The PCR fragment of the artificially synthesized PUF-SR or wild-type PUFSR was cloned into pAd-Track plasmid, and the recombinant plasmids were transformed into E. coli DH5α for plasmid amplification. The amplified plasmids were digested with Pac I and transfected into 293A cells for packaging to obtain the adenovirus vectors. Cultured neonatal rat cardiomyocytes were transfected with the adenoviral vectors, and alternative splicing of YAP1 was detected using quantitative and semi-quantitative PCR; Western blotting was performed to detect the signal of the fusion protein Flag.@*RESULTS@#The transfection efficiency of the adenovirus vectors was close to 100% in rat cardiomyocytes, and no fluorescent protein was detected in the cells with plasmid transfection. The results of Western blotting showed that both the negative control and Flag-SR-NLS-PUF targeting the YAPExon6XULIE sequence were capable of detecting the expression of the protein fused to Flag. The results of reverse transcription-PCR and PCR demonstrated that the artificial splicing factor constructed based on the 4th target sequence of YAP1 effectively regulated the splicing of YAP1 Exon6 in the cardiomyocytes (P < 0.05).@*CONCLUSION@#We successfully constructed adenovirus vectors capable of regulating YAP1 alternative splicing rat cardiomyocytes.


Asunto(s)
Animales , Ratas , Adenoviridae/metabolismo , Empalme Alternativo , Animales Recién Nacidos , Escherichia coli/metabolismo , Vectores Genéticos , Miocitos Cardíacos/metabolismo , Plásmidos , Factores de Empalme de ARN/metabolismo , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA