Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
China Journal of Chinese Materia Medica ; (24): 5181-5194, 2023.
Artículo en Chino | WPRIM | ID: wpr-1008716

RESUMEN

Artemisia argyi is an important medicinal and economic plant in China, with the effects of warming channels, dispersing cold, and relieving pain, inflammation, and allergy. The essential oil of this plant is rich in volatile terpenoids and widely used in moxi-bustion and healthcare products, with huge market potential. The bZIP transcription factors compose a large family in plants and are involved in the regulation of plant growth and development, stress response, and biosynthesis of secondary metabolites such as terpenoids. However, little is known about the bZIPs and their roles in A. argyi. In this study, the bZIP transcription factors in the genome of A. argyi were systematically identified, and their physicochemical properties, phylogenetic relationship, conserved motifs, and promoter-binding elements were analyzed. Candidate AarbZIP genes involved in terpenoid biosynthesis were screened out. The results showed that a total of 156 AarbZIP transcription factors were identified at the genomic level, with the lengths of 99-618 aa, the molecular weights of 11.7-67.8 kDa, and the theoretical isoelectric points of 4.56-10.16. According to the classification of bZIPs in Arabidopsis thaliana, the 156 AarbZIPs were classified into 12 subfamilies, and the members in the same subfamily had similar conserved motifs. The cis-acting elements of promoters showed that AarbZIP genes were possibly involved in light and hormonal pathways. Five AarbZIP genes that may be involved in the regulation of terpenoid biosynthesis were screened out by homologous alignment and phylogenetic analysis. The qRT-PCR results showed that the expression levels of the five AarbZIP genes varied significantly in different tissues of A. argyi. Specifically, AarbZIP29 and AarbZIP55 were highly expressed in the leaves and AarbZIP81, AarbZIP130, and AarbZIP150 in the flower buds. This study lays a foundation for the functional study of bZIP genes and their regulatory roles in the terpenoid biosynthesis in A. argyi.


Asunto(s)
Perfilación de la Expresión Génica , Filogenia , Artemisia/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Terpenos , Regulación de la Expresión Génica de las Plantas
2.
Acta Physiologica Sinica ; (6): 761-771, 2021.
Artículo en Chino | WPRIM | ID: wpr-921279

RESUMEN

Nutrient overload-caused deregulation of glucose and lipid metabolism leads to insulin resistance and metabolic disorders, which increases the risk of several types of cancers. CREB/ATF bZIP transcription factor (CREBZF), a novel transcription factor of the ATF/CREB family, has emerged as a critical mechanism bridging the gap between metabolism and cell growth. CREBZF forms a heterodimer with other proteins and functions as a coregulator for gene expression. CREBZF deficiency in the liver attenuates hepatic steatosis in high fat diet-induced insulin-resistant mice, while the expression levels of CREBZF are increased in the livers of obese mice and humans with hepatic steatosis. Intriguingly, CREBZF also regulates cell proliferation and apoptosis via interaction with several transcription factors including STAT3, p53 and HCF-1. Knockout of CREBZF in hepatocytes results in enhanced cell cycle progression and proliferation capacity in mice. Here we highlight how the CREBZF signaling network contributes to the deregulation of metabolism and cell growth, and discuss the potential of targeting these molecules for the treatment of insulin resistance, diabetes, fatty liver disease and cancer.


Asunto(s)
Animales , Ratones , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Ciclo Celular , Proliferación Celular , Dieta Alta en Grasa , Hepatocitos , Resistencia a la Insulina , Metabolismo de los Lípidos , Hígado , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA