Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Journal of Integrative Medicine ; (12): 184-193, 2023.
Artículo en Inglés | WPRIM | ID: wpr-971653

RESUMEN

OBJECTIVE@#Physical exercise, a common non-drug intervention, is an important strategy in cancer treatment, including hepatocellular carcinoma (HCC). However, the mechanism remains largely unknown. Due to the importance of hypoxia and cancer stemness in the development of HCC, the present study investigated whether the anti-HCC effect of physical exercise is related to its suppression on hypoxia and cancer stemness.@*METHODS@#A physical exercise intervention of swimming (30 min/d, 5 d/week, for 4 weeks) was administered to BALB/c nude mice bearing subcutaneous human HCC tumor. The anti-HCC effect of swimming was assessed in vivo by tumor weight monitoring, hematoxylin and eosin (HE) staining, and immunohistochemistry (IHC) detection of proliferating cell nuclear antigen (PCNA) and Ki67. The expression of stemness transcription factors, including Nanog homeobox (NANOG), octamer-binding transcription factor 4 (OCT-4), v-Myc avian myelocytomatosis viral oncogene homolog (C-MYC) and hypoxia-inducible factor-1α (HIF-1α), was detected using real-time reverse transcription polymerase chain reaction. A hypoxia probe was used to explore the intratumoral hypoxia status. Western blot was used to detect the expression of HIF-1α and proteins related to protein kinase B (Akt)/glycogen synthase kinase-3β (GSK-3β)/β-catenin signaling pathway. The IHC analysis of platelet endothelial cell adhesion molecule-1 (CD31), and the immunofluorescence co-location of CD31 and desmin were used to analyze tumor blood perfusion. SMMC-7721 cells were treated with nude mice serum. The inhibition effect on cancer stemness in vitro was detected using suspension sphere experiments and the expression of stemness transcription factors. The hypoxia status was inferred by measuring the protein and mRNA levels of HIF-1α. Further, the expression of proteins related to Akt/GSK-3β/β-catenin signaling pathway was detected.@*RESULTS@#Swimming significantly reduced the body weight and tumor weight in nude mice bearing HCC tumor. HE staining and IHC results showed a lower necrotic area ratio as well as fewer PCNA or Ki67 positive cells in mice receiving the swimming intervention. Swimming potently alleviated the intratumoral hypoxia, attenuated the cancer stemness, and inhibited the Akt/GSK-3β/β-catenin signaling pathway. Additionally, the desmin+/CD31+ ratio, rather than the number of CD31+ vessels, was significantly increased in swimming-treated mice. In vitro experiments showed that treating cells with the serum from the swimming intervention mice significantly reduced the formation of SMMC-7721 cell suspension sphere, as well as the mRNA expression level of stemness transcription factors. Consistent with the in vivo results, HIF-1α and Akt/GSK-3β/β-catenin signaling pathway were also inhibited in cells treated with serum from swimming group.@*CONCLUSION@#Swimming alleviated hypoxia and attenuated cancer stemness in HCC, through suppression of the Akt/GSK-3β/β-catenin signaling pathway. The alleviation of intratumoral hypoxia was related to the increase in blood perfusion in the tumor. Please cite this article as: Xiao CL, Zhong ZP, Lü C, Guo BJ, Chen JJ, Zhao T, Yin ZF, Li B. Physical exercise suppresses hepatocellular carcinoma progression by alleviating hypoxia and attenuating cancer stemness through the Akt/GSK-3β/β-catenin pathway. J Integr Med. 2023; 21(2): 184-193.


Asunto(s)
Humanos , Animales , Ratones , Carcinoma Hepatocelular/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Antígeno Nuclear de Célula en Proliferación/uso terapéutico , Ratones Desnudos , Glucógeno Sintasa Quinasa 3 beta/genética , beta Catenina/uso terapéutico , Neoplasias Hepáticas/tratamiento farmacológico , Desmina/uso terapéutico , Antígeno Ki-67 , Línea Celular Tumoral , Hipoxia , ARN Mensajero/uso terapéutico , Proliferación Celular
2.
China Journal of Chinese Materia Medica ; (24): 786-795, 2022.
Artículo en Chino | WPRIM | ID: wpr-927962

RESUMEN

The present study explored the main active ingredients and the underlying mechanism of Spatholobi Caulisin the treatment of ovarian cancer(OC) by network pharmacology, molecular docking, and in vitro cell experiments. The active ingredients and their predicted targets(AITs) were first acquired online with the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP). Theoretical disease targets(DTs) were obtained through professional databases including GeneCards, OMIM, PharmGkb, TTD, and DrugBank. The common targets in the intersection of AITs and DTs were used for the construction of a "drug-ingredient-disease-target" network by Cytoscape 3.7.1. STRING database was used to construct a protein-protein interaction(PPI) network. R 4.0.5 was used for GO and KEGG functional enrichment analyses. Schr9 dinger Maestro was used to perform and optimize the molecular docking and virtual screening.Twenty-three active ingredients of Spatholobi Caulis were screened out, involving 75 OC targets and 178 signaling pathways.Network analysis revealed that Spatholobi Caulis presumedly exerted an anti-OC effect by acting on key protein targets such as GSK-3β, Bcl-2, and Bax. Molecular docking showed that GSK-3β possessed goodbinding activity to prunetin. In vitro cell experiments preliminarily verified the core targets and pathways of prunetin, the active ingredient of Spatholobi Caulis against human OC SKOV3 cells.CCK-8 assay was used to detect the cell proliferation, and flow cytometry was used to detect the effect of prunetin on apoptosis of human OC SKOV3 cells.The expression of prunetin targets and related regulatory proteins was detected by Western blot.In vitro cell experiments demonstrated that prunetindisplayed significant inhibitory effects on the proliferation of OC cells and could induce apoptosis of SKOV3 cells. Western blot showed that prunetin could induce SKOV3 cell apoptosis by inhibiting GSK-3β phosphorylation and regulating the expression of downstream Bcl-2 and Bax proteins. This study reveals the scientific nature of network pharmacology in the prediction and guidance of experimental design, confirming that prunetin can treat OC by blocking the GSK-3β/Bcl-2/Bax cell signal transduction pathway. The findings are expected to provide a basis for the investigation of the mechanism of Spatholobi Caulis in the treatment of OC.


Asunto(s)
Humanos , Medicamentos Herbarios Chinos/farmacología , Glucógeno Sintasa Quinasa 3 beta/genética , Medicina Tradicional China , Simulación del Acoplamiento Molecular , Farmacología en Red , Neoplasias Ováricas/genética
3.
Chinese Medical Journal ; (24): 963-970, 2021.
Artículo en Inglés | WPRIM | ID: wpr-878129

RESUMEN

BACKGROUND@#Histone deacetylase 4 (HDAC4) regulates chondrocyte hypertrophy and bone formation. The aim of the present study was to explore the effects of HDAC4 on Interleukin 1 beta (IL-1β)-induced chondrocyte extracellular matrix degradation and whether it is regulated through the WNT family member 3A (WNT3A)/β-catenin signaling pathway.@*METHODS@#Primary chondrocytes (CC) and human chondrosarcoma cells (SW1353 cells) were treated with IL-1β and the level of HDAC4 was assayed using Western blotting. Then, HDAC4 expression in the SW1353 cells was silenced using small interfering RNA to detect the effect of HDAC4 knockdown on the levels of matrix metalloproteinase 3 (MMP3) and MMP13 induced by IL-1β. After transfection with HDAC4 plasmids, the overexpression efficiency was examined using Real-time quantitative polymerase chain reaction (qRT-PCR) and the levels of MMP3 and MMP13 were assayed using Western blotting. After incubation with IL-1β, the translocation of β-catenin into the nucleus was observed using immunofluorescence staining in SW1353 cells to investigate the activation of the WNT3A/β-catenin signaling pathway. Finally, treatment with WNT3A and transfection with glycogen synthase kinase 3 beta (GSK3β) plasmids were assessed for their effects on HDAC4 levels using Western blotting.@*RESULTS@#IL-1β downregulated HDAC4 levels in chondrocytes and SW1353 cells. Furthermore, HDAC4 knockdown increased the levels of MMP3 and MMP13, which contributed to the degradation of the extracellular matrix. Overexpression of HDAC4 inhibited IL-1β-induced increases in MMP3 and MMP13. IL-1β upregulated the levels of WNT3A, and WNT3A reduced HDAC4 levels in SW1353 cells. GSK-3β rescued IL-1β-induced downregulation of HDAC4 in SW1353 cells.@*CONCLUSION@#HDAC4 exerted an inhibitory effect on IL-1β-induced extracellular matrix degradation and was regulated partially by the WNT3A/β-catenin signaling pathway.


Asunto(s)
Humanos , Línea Celular Tumoral , Células Cultivadas , Condrocitos/metabolismo , Glucógeno Sintasa Quinasa 3 beta/genética , Histona Desacetilasas/genética , Interleucina-1beta/farmacología , Metaloproteinasa 13 de la Matriz/metabolismo , Metaloproteinasa 3 de la Matriz , Proteínas Represoras , Vía de Señalización Wnt , Proteína Wnt3A/genética , beta Catenina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA