Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
An. Facultad Med. (Univ. Repúb. Urug., En línea) ; 5(2): 12-28, dic. 2018. tab, graf
Artículo en Español | LILACS, BNUY, UY-BNMED | ID: biblio-1088677

RESUMEN

El genoma humano, como el de todos los mamíferos y aves, es un mosaico de isocoros, los que son regiones muy largas de ADN (>>100 kb) que son homogéneas en cuanto a su composición de bases. Los isocoros pueden ser divididos en un pequeño número de familias que cubren un amplio rango de niveles de GC (GC es la relación molar de guanina+citosina en el ADN). En el genoma humano encontramos cinco familias, que (yendo de valores bajos a altos de GC) son L1, L2, H1, H2 y H3. Este tipo de organización tiene importantes consecuencias funcionales, tales como la diferente concentración de genes, su regulación, niveles de transcripción, tasas de recombinación, tiempo de replicación, etc. Además, la existencia de los isocoros lleva a las llamadas "correlaciones composicionales", lo que significa que en la medida en que diferentes secuencias están localizadas en diferentes isocoros, todas sus regiones (exones y sus tres posiciones de los codones, intrones, etc.) cambian su contenido en GC, y como consecuencia, cambian tanto el uso de aminoácidos como de codones sinónimos en cada familia de isocoros. Finalmente, discutimos el origen de estas estructuras en un marco evolutivo.


The human genome, as the genome of all mammals and birds, are mosaic of isochores, which are very long streches (>> 100 kb) of DNA that are homogeneous in base composition. Isochores can be divided in a small number of families that cover a broad range of GC levels (GC is the molar ratio of guanine+cytosine in DNA). In the human genome, we find five families, which are (going from GC- poor to GC- rich) L1, L2, H1, H2 and H3. This organization has important consequences, as is the case of the concentration of genes, their regulation, transcription levels, rate of recombination, time of replication, etc. Furthermore, the existence of isochores has as a consequence the so called "compositional correlations", which means that as long as sequences are placed in different families of isochores, all of their regions (exons and their three codon positions, introns, etc.) change their GC content, and as a consequence, both codon and amino acids usage change in each isochore family. Finally, we discuss the origin of isochores within an evolutioary framework.


O genoma humano, como todos os mamíferos e aves, é um mosaico de isocóricas, que são muito longas regiões de ADN (>> 100 kb) que são homogéneos na sua composição de base. Isóquos podem ser divididos em um pequeno número de famílias que cobrem uma ampla gama de níveis de GC (GC é a razão molar de guanina + citosina no DNA). No genoma humano, encontramos cinco famílias, que (variando de valores baixos a altos de GC) são L1, L2, H1, H2 e H3. Este tipo de organização tem importantes conseqüências funcionais, como a diferente concentração de genes, sua regulação, níveis de transcrição, taxas de recombinação, tempo de replicação, etc. Além disso, a existência de isocóricas portada chamado "correlações de composição", o que significa que, na medida em que diferentes sequências estão localizados em diferentes isocóricas, todas as regiões (exs e três posições de codões, intrs, etc.) mudam seu conteúdo em GC e, como consequência, alteram tanto o uso de aminoácidos quanto de códons sinônimos em cada família de isócoros. Finalmente, discutimos a origem dessas estruturas em uma estrutura evolucionária.


Asunto(s)
Humanos , Genoma Humano/genética , Isocoras/genética , Composición de Base , Intrones/genética
2.
Genomics, Proteomics & Bioinformatics ; (4): 144-154, 2008.
Artículo en Inglés | WPRIM | ID: wpr-316989

RESUMEN

Vertebrate genomes are characterized with CpG deficiency, particularly for GC-poor regions. The GC content-related CpG deficiency is probably caused by context-dependent deamination of methylated CpG sites. This hypothesis was examined in this study by comparing nucleotide frequencies at CpG flanking positions among invertebrate and vertebrate genomes. The finding is a transition of nucleotide preference of 5' T to 5' A at the invertebrate-vertebrate boundary, indicating that a large number of CpG sites with 5' Ts were depleted because of global DNA methylation developed in vertebrates. At genome level, we investigated CpG observed/expected (obs/exp) values in 500 bp fragments, and found that higher CpG obs/exp value is shown in GC-poor regions of invertebrate genomes (except sea urchin) but in GC-rich sequences of vertebrate genomes. We next compared GC content at CpG flanking positions with genomic average, showing that the GC content is lower than the average in invertebrate genomes, but higher than that in vertebrate genomes. These results indicate that although 5' T and 5' A are different in inducing deamination of methylated CpG sites, GC content is even more important in affecting the deamination rate. In all the tests, the results of sea urchin are similar to vertebrates perhaps due to its fractional DNA methylation. CpG deficiency is therefore suggested to be mainly a result of high mutation rates of methylated CpG sites in GC-poor regions.


Asunto(s)
Animales , Humanos , Secuencia Rica en At , Islas de CpG , Genética , Metilación de ADN , Secuencia Rica en GC , Frecuencia de los Genes , Genoma , Genómica , Métodos , Invertebrados , Genética , Isocoras , Genética , Mutación , Vertebrados , Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA