Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Tipo de estudio
Intervalo de año
1.
Braz. j. med. biol. res ; 54(8): e10660, 2021. graf
Artículo en Inglés | LILACS | ID: biblio-1249330

RESUMEN

It is known that the combined use of antibiotics, such as isoniazid and rifampicin, in the treatment of tuberculosis causes oxidative kidney damage. The aim of this study was to biochemically and histopathologically investigate the effect of lycopene on oxidative kidney damage due to the administration of isoniazid and rifampicin in albino Wistar male rats. Lycopene at a dose of 5 mg/kg was orally administered to lycopene+isoniazid+rifampicin (LIR) rats, and normal sunflower oil (0.5 mL) was orally administered to isoniazid+rifampicin (IR) and healthy control (HG) rats as vehicle by gavage. One hour after the administration of lycopene and vehicle, 50 mg/kg isoniazid and rifampicin were given orally to the LIR and IR groups. This procedure was performed once a day for 28 days. Rats were sacrificed by a high dose of anesthesia at the end of this period, and oxidant-antioxidant parameters were measured in the removed kidney tissues. Creatinine and blood urea nitrogen (BUN) levels were measured in blood samples, and kidney tissues were also evaluated histopathologically. The combined administration of isoniazid and rifampicin changed the oxidant-antioxidant balance in favor of oxidants, and it increased blood urea nitrogen and creatinine levels, which are indicators of kidney function. Co-administration of isoniazid and rifampicin also caused oxidative kidney damage. Lycopene biochemically and histopathologically decreased oxidative kidney damage induced by isoniazid and rifampicin administration. These results suggested that lycopene may be beneficial in the treatment of nephrotoxicity due to isoniazid and rifampicin administration.


Asunto(s)
Animales , Masculino , Ratas , Rifampin/toxicidad , Isoniazida/toxicidad , Carotenoides/metabolismo , Estrés Oxidativo , Licopeno/metabolismo , Riñón/metabolismo , Antioxidantes/metabolismo
2.
Journal of Zhejiang University. Science. B ; (12): 172-177, 2020.
Artículo en Inglés | WPRIM | ID: wpr-1010524

RESUMEN

Blakeslea trispora is a natural source of carotenoids, including β-carotene and lycopene, which have industrial applications. Therefore, classical selective breeding techniques have been applied to generate strains with increased productivity, and microencapsulated β-carotene preparation has been used in food industry (Li et al., 2019). In B. trispora, lycopene is synthesized via the mevalonate pathway (Venkateshwaran et al., 2015). Lycopene cyclase, which is one of the key enzymes in this pathway, is a bifunctional enzyme that can catalyze the cyclization of lycopene to produce β-carotene and exhibit phytoene synthase activity (He et al., 2017).


Asunto(s)
Ciclo del Ácido Cítrico , Fermentación , Cromatografía de Gases y Espectrometría de Masas/métodos , Licopeno/metabolismo , Mucorales/metabolismo , Nicotina/farmacología , beta Caroteno/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA