Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros








Intervalo de año
1.
Experimental & Molecular Medicine ; : e185-2015.
Artículo en Inglés | WPRIM | ID: wpr-215495

RESUMEN

The Raf kinase inhibitory protein (RKIP) has been demonstrated to modulate different intracellular signaling pathways in cancers. Studies have shown that RKIP is frequently downregulated in cancers; therefore, attempts have been made to upregulate the expression of RKIP using natural and synthetic agents for the treatment of human malignancies. Moreover, various regulators such as specific proteins and microRNAs (miRNAs) that are involved in the regulation of RKIP expression have also been identified. RKIP mechanistically modulates the apoptotic regulators of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling. Because of its critical role in human cancers, RKIP has drawn much research attention, and our understanding is expanding rapidly. Here, we summarize some of the biological complexities of RKIP regulation. However, we restrict our discussion to selected tumors by focusing on TRAIL, miRNAs and natural agents. Emerging evidence suggests a role for natural agents in RKIP regulation in cancer cells; therefore, naturally occurring agents may serve as cancer-targeting agents for cancer treatment. Although the literature suggests some advancement in our knowledge of RKIP biology, it is incomplete with regard to its preclinical and clinical efficacy; thus, further research is warranted. Furthermore, the mechanism by which chemotherapeutic drugs and novel compounds modulate RKIP and how nanotechnologically delivered RKIP can be therapeutically exploited remain to be determined.


Asunto(s)
Humanos , Masculino , Apoptosis , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Neoplasias/genética , Proteínas de Unión a Fosfatidiletanolamina/genética , Mapas de Interacción de Proteínas , Transducción de Señal , Ligando Inductor de Apoptosis Relacionado con TNF/genética
2.
Experimental & Molecular Medicine ; : 580-586, 2011.
Artículo en Inglés | WPRIM | ID: wpr-131294

RESUMEN

Malignant glioma is the most frequent type in brain tumors. The prognosis of this tumor has not been significantly improved for the past decades and the average survival of patients is less than one year. Thus, an effective novel therapy is urgently needed. TNF-related apoptosis inducing ligand (TRAIL), known to have tumor cell-specific killing activity, has been investigated as a novel therapeutic for cancers. We have developed Ad-stTRAIL, an adenovirus delivering secretable trimeric TRAIL for gene therapy and demonstrated the potential to treat malignant gliomas. Currently, this Ad-stTRAIL gene therapy is under phase I clinical trial for malignant gliomas. Here, we report preclinical studies for Ad-stTRAIL carried out using rats. We delivered Ad-stTRAIL intracranially and determined its pharmacokinetics and biodistribution. Most Ad-stTRAIL remained in the delivered site and the relatively low number of viral genomes was detected in the opposite site of brain and cerebrospinal fluid. Similarly, only small portion of the viral particles injected was found in the blood plasma and major organs and tissues, probably due to the brain-blood barrier. Multiple administrations did not lead to accumulation of Ad-stTRAIL at the injection site and organs. Repeated delivery of Ad-stTRAIL did not show any serious side effects. Our data indicate that intracranially delivered Ad-stTRAIL is a safe approach, demonstrating the potential as a novel therapy for treating gliomas.


Asunto(s)
Animales , Humanos , Ratas , Adenoviridae/genética , Barrera Hematoencefálica , Encéfalo/efectos de los fármacos , Neoplasias Encefálicas/genética , Ensayos Clínicos Fase I como Asunto , ADN Viral/metabolismo , Modelos Animales de Enfermedad , Sistemas de Liberación de Medicamentos , Evaluación Preclínica de Medicamentos , Terapia Genética , Glioma/genética , Hígado/efectos de los fármacos , Multimerización de Proteína/genética , Bazo/efectos de los fármacos , Ligando Inductor de Apoptosis Relacionado con TNF/genética
3.
Experimental & Molecular Medicine ; : 580-586, 2011.
Artículo en Inglés | WPRIM | ID: wpr-131291

RESUMEN

Malignant glioma is the most frequent type in brain tumors. The prognosis of this tumor has not been significantly improved for the past decades and the average survival of patients is less than one year. Thus, an effective novel therapy is urgently needed. TNF-related apoptosis inducing ligand (TRAIL), known to have tumor cell-specific killing activity, has been investigated as a novel therapeutic for cancers. We have developed Ad-stTRAIL, an adenovirus delivering secretable trimeric TRAIL for gene therapy and demonstrated the potential to treat malignant gliomas. Currently, this Ad-stTRAIL gene therapy is under phase I clinical trial for malignant gliomas. Here, we report preclinical studies for Ad-stTRAIL carried out using rats. We delivered Ad-stTRAIL intracranially and determined its pharmacokinetics and biodistribution. Most Ad-stTRAIL remained in the delivered site and the relatively low number of viral genomes was detected in the opposite site of brain and cerebrospinal fluid. Similarly, only small portion of the viral particles injected was found in the blood plasma and major organs and tissues, probably due to the brain-blood barrier. Multiple administrations did not lead to accumulation of Ad-stTRAIL at the injection site and organs. Repeated delivery of Ad-stTRAIL did not show any serious side effects. Our data indicate that intracranially delivered Ad-stTRAIL is a safe approach, demonstrating the potential as a novel therapy for treating gliomas.


Asunto(s)
Animales , Humanos , Ratas , Adenoviridae/genética , Barrera Hematoencefálica , Encéfalo/efectos de los fármacos , Neoplasias Encefálicas/genética , Ensayos Clínicos Fase I como Asunto , ADN Viral/metabolismo , Modelos Animales de Enfermedad , Sistemas de Liberación de Medicamentos , Evaluación Preclínica de Medicamentos , Terapia Genética , Glioma/genética , Hígado/efectos de los fármacos , Multimerización de Proteína/genética , Bazo/efectos de los fármacos , Ligando Inductor de Apoptosis Relacionado con TNF/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA