Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros








Intervalo de año
1.
Campinas; s.n; 2006. 168 p. ilus, graf.
Tesis en Portugués | LILACS | ID: lil-629908

RESUMEN

A ação das meso-porfirinas catiônica Fe(III)TMPyP e aniônica Fe(III)TPPS4 sobre a função mitocondrial e viabilidade de células de tumor de próstata LNCaP foi investigada. O tratamento das suspensões mitocondriais com 1 µM de Fe(III)TMPyP por 2 minutos e 45 segundos no escuro diminuiu o controle respiratório mitocondrial (C.R.) em 3%. A irradiação potencializou este efeito, induzindo uma queda no C.R. em 28%. A porfirina aniônica Fe(III)TPPS4, nas mesmas condições experimentais, não provocou efeito significativo algum. Ambas porfirinas aumentaram a produção de espécies reativas de oxigênio (EROs) na presença de Ca2+; o efeito de Fe(III)TMPyP foi significativamente maior. Esta porfirina catiônica, porém não a aniônica, promoveu o fenômeno de transição de permeabilidade mitocondrial (TPM), sensível à ciclosporina A (CsA). Além disso, Fe(III)TMPyP apresentou uma constante de associação (Kb) com mitocôndrias 11 vezes maior que Fe(III)TPPS4, provavelmente devido às interações eletroestáticas entre a porfirina catiônica e a membrana mitocondrial interna, carregada negativamente. Observou-se também que ambas porfirinas diminuíram a viabilidade de células tumorais de maneira dose-dependente, apresentando um IC50 de aproximadamente 15 µM, após 48 h de incubação no escuro. Tratando as células com a dose de 10 µM para cada porfirina e um tempo menor de exposição no escuro (1 h), observou-se efeito...


The action of irradiated cationic Fe(III)TMPyP and anionic Fe(III)TPPS4 forms of mesoporphyrins on mitochondrial functions was investigated using experimental conditions that caused minimal effects on mitochondria in the dark. Treatment of mitochondria with 1 µM Fe(III)TMPyP for 2 min decreased the respiratory control by 3% in the dark and 28% after irradiation. Fe(III)TPPS4 (1 µM) had no significant effect on respiratory control under any of the above conditions. Both porphyrins increased mitochondrial production of reactive oxygen species in the presence of Ca2+; however, the effect of Fe(III)TMPyP was significantly stronger. Fe(III)TMPyP but not Fe(III)TPPS4 promoted cyclosporin A-sensitive mitochondrial permeability transition. It was also observed that the association constant of Fe(III)TMPyP with mitochondria was 11 times higher than Fe(III)TPPS4. In conclusion, the damage to isolated mitochondria induced by Fe(III)TMPyP under illumination was larger than by Fe(III)TPPS4, probably because its cationic charge favors association with the mitochondrial membrane. The citotoxic effect of both porphyrins, prior the irradiation and upon the cell viability were dose-dependent and the IC50 were approximatly 15 µM...


Asunto(s)
Humanos , Animales , Adulto , Ratas , Mesoporfirinas/farmacología , Mesoporfirinas/metabolismo , Mitocondrias Hepáticas/metabolismo , Neoplasias de la Próstata , Porfirinas/metabolismo , Fármacos Fotosensibilizantes/efectos de la radiación
2.
Korean Journal of Radiology ; : 235-239, 2002.
Artículo en Inglés | WPRIM | ID: wpr-147902

RESUMEN

OBJECTIVE: To determine whether the size of a perfusion defect seen at myocardial perfusion MR imaging represents the extent of irreversibly damaged myocardium in acute reperfused myocardial infarction. MATERIALS AND METHODS: In nine cats, reperfused myocardial infarction was induced by occlusion of the left anterior descending coronary artery for 90 minutes and subsequent reperfusion for 90 minutes. At single-slice myocardial perfusion MR imaging at the midventricular level using a turbo-FLASH sequence, 60 short-axis images were sequentially obtained with every heart beat after bolus injection of gadomer-17. The size of the perfusion defect was measured and compared with both the corresponding unstained area seen at triphenyl tetrazolium chloride (TTC) staining and the hyperenhanced area seen at gadophrin-2-enhanced MR imaging performed in the same cat six hours after myocardial perfusion MR imaging. RESULTS: The sizes of perfusion defects seen at gadomer-17-enhanced perfusion MR imaging, unstained areas at TTC staining, and hyperenhanced areas at gadophrin-2-enhanced MR imaging were 20.4+/-4.3%, 29.0+/-9.7%, and 30.7+/-10.6% of the left ventricular myocardium, respectively. The perfusion defects seen at myocardial perfusion MR imaging were significantly smaller than the unstained areas at TTC staining and hyperenhanced areas at gadophrin-2-enhanced MR imaging (p < .01). The sizes of both the perfusion defect at myocardial perfusion MR imaging and the hyperenhanced area at gadophrin-2- enhanced MR imaging correlated well with the sizes of unstained areas at TTC staining (r = .64, p = .062 and r = .70, p = .035, respectively). CONCLUSION: In this cat model, the perfusion defect revealed by myocardial perfusion MR imaging underestimated the true size of acute reperfused myocardial infarction. The defect may represent a more severely damaged area of infarction and probably has prognostic significance.


Asunto(s)
Gatos , Animales , Medios de Contraste , Gadolinio , Gadolinio DTPA , Imagen por Resonancia Magnética , Mesoporfirinas , Metaloporfirinas , Infarto del Miocardio/patología , Reperfusión Miocárdica , Miocardio/patología
3.
Korean Journal of Radiology ; : 21-27, 2001.
Artículo en Inglés | WPRIM | ID: wpr-171862

RESUMEN

OBJECTIVE: To identify and evaluate the lateral border zone by comparing the size and distribution of the abnormal signal area demonstrated by MR imaging with the infarct area revealed by pathological examination in a reperfused myocardial infarction cat model. MATERIALS AND METHODS: In eight cats, the left anterior descending coronary artery was occluded for 90 minutes, and this was followed by 90 minutes of reper-fusion. ECG-triggered breath-hold turbo spin-echo T2-weighted MR images were initially obtained along the short axis of the heart before the administration of contrast media. After the injection of Gadomer-17 and Gadophrin-2, contrast-enhanced T1-weighted MR images were obtained for three hours. The size of the abnormal signal area seen on each image was compared with that of the infarct area after TTC staining. To assess ultrastructural changes in the myocardium at the infarct area, lateral border zone and normal myocardium, electron microscopic examination was performed. RESULTS: The high signal area seen on T2-weighted images and the enhanced area seen on Gadomer-17-enhanced T1WI were larger than the enhanced area on Gadophrin-2-enhanced T1WI and the infarct area revealed by TTC staining; the difference was expressed as a percentage of the size of the total left ventricle mass (T2= 39.2 %; Gadomer-17 =37.25 % vs Gadophrin-2 = 29.6 %; TTC staining = 28.2 %; p < 0.05). The ultrastructural changes seen at the lateral border zone were compatible with reversible myocardial damage. CONCLUSION: In a reperfused myocardial infarction cat model, the presence and size of the lateral border zone can be determined by means of Gadomer-17- and Gadophrin-2-enhanced MR imaging.


Asunto(s)
Gatos , Animales , Medios de Contraste , Gadolinio , Imagen por Resonancia Magnética/métodos , Mesoporfirinas , Metaloporfirinas , Infarto del Miocardio/patología , Reperfusión Miocárdica , Miocardio/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA