Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
Chinese Journal of Biotechnology ; (12): 248-261, 2023.
Artículo en Chino | WPRIM | ID: wpr-970372

RESUMEN

Mycoplasma pneumoniae is the most common pathogen of respiratory tract infection in children and adults. Clinical observation shows that M. pneumoniae infection can cause massive mucus secretion in the respiratory tract, which makes the breathing of patients difficult. Studies have shown that M. pneumoniae infection can cause massive secretion of mucin 5AC (MUC5AC). Adhesin P1 plays an important role in the pathogenesis of M. pneumoniae infection by mediating the adhesion of pathogens to host cells, and the C-terminal residues of P1 (P1-C) are immunogenic. This study investigated the molecular mechanism of Wnt/β-catenin signaling pathway inhibitor Dickkopf-1 (DKK1) in the secretion of MUC5AC in mouse airway epithelial cells (MAECs) induced by P1-C. Scanning electron microscope and hematoxylin-eosin staining were used to observe the effect of P1-C on mucus secretion of MAECs. Protein chip was used to detect the secretion of cytokines and analyse the enrichment of related signaling pathways induced by P1-C in MAECs. Periodic acid schiff stain (PAS) staining, Tunel staining and Masson staining were used to detect the damage of the lungs of mouse exposed to P1-C. Immunohistochemistry was used to detect the secretion of MUC5AC expression, and Western blotting was used to reveal the molecular mechanism of DKK1-regulated secretion of MUC5AC induced by P1-C protein in MACES. The results showed that P1-C induced the massive secretion of mucus and inflammatory factors in MAECs. During P1-C infection, DKK1 down-regulated janus kinase 2 (JAK2), phosphorylation signaling and transcription activator 1 (p-STAT1) and phosphorylation signaling and activator of transcription 3 (p-STAT3) expression. Overexpression of DKK1 significantly up-regulated the expression of MUC5AC repressor transcription factor fork-head box protein A2 (FOXA2). At the same time, the expression of MUC5AC induced by P1-C was inhibited significantly. It is speculated that DKK1 can effectively reduce the secretion of MUC5AC in MAECs induced by P1-C by inhibiting the JAK/STAT1-STAT3 signaling pathway and up-regulating the expression of FOXA2.


Asunto(s)
Animales , Ratones , Células Epiteliales , Pulmón , Mucina 5AC/metabolismo , Mycoplasma pneumoniae/metabolismo , Transducción de Señal
2.
Chinese Medical Sciences Journal ; (4): 270-276, 2019.
Artículo en Inglés | WPRIM | ID: wpr-1008977

RESUMEN

Objective To evaluate the antagonistic effects of N-acetylcysteine (NAC) on mitogen-activated protein kinases (MAPK) pathway activation, oxidative stress and inflammatory responses in rats with lung injury induced by fine particulate matter (PM2.5). Methods Forty eight male Wistar rats were randomly divided into six groups: blank control group (C1), water drip control group (C2), PM2.5 exposed group (P), low-dose NAC treated and PM2.5 exposed group (L), middle-dose NAC treated and PM2.5 exposed group (M), and high-dose NAC treated and PM2.5 exposed group (H). PM2.5 suspension (7.5 mg/kg) was administered tracheally once a week for four times. NAC of 125 mg/kg, 250 mg/kg and 500 mg/kg was delivered intragastrically to L, M and H group respectively by gavage (10 ml/kg) for six days before PM2.5 exposure. The histopathological changes and human mucin 5 subtype AC (MUC5AC) content in lung tissue of rats were evaluated. We investigated IL-6 in serum and bronchoalveolar lavage fluid (BALF) by Enzyme-linked immunosorbent assay (ELISA), MUC5AC in lung tissue homogenate by ELISA, glutathione peroxidase (GSH-PX) in serum and BALF by spectrophotometry, and the expression of p-ERK1/2, p-JNK1/2 and p-p38 proteins by Western blot. All the measurements were analyzed and compared statistically. Results Lung tissue of rats exposed to PM2.5 showed histological destruction and increased mucus secretion of bronchial epithelial cells. Rats receiving NAC treatment showed less histological destruction and mucus secretion. Of P, L, M and H group, MUC5AC in lung tissue, IL-6 in serum and BALF were higher than controls (C1 and C2) (all P<0.05), with the highest levels found in the P group and a decreasing trend with increase of NAC dose. The activity of GSH-PX in serum and BALF of PM2.5 exposed rats (P, L, M and H) was lower than that of controls (all P<0.05), with higher activities found in NAC treated rats (L, M, and H), and an increasing trend with increase of NAC dose. The expressions of p-ERK1/2, p-JNK1/2 and p-p38 proteins in PM2.5 exposed lung tissue (P, L, M and H) was higher than controls (all P<0.05), with decreased levels and dose dependent downregulation found in NAC treated rats. Conclusion NAC can antagonize major MAPK pathway activation, lung oxidative stress and inflammatory injury induced by PM2.5 in rats.


Asunto(s)
Animales , Masculino , Acetilcisteína/farmacología , Líquido del Lavado Bronquioalveolar , Activación Enzimática/efectos de los fármacos , Glutatión Peroxidasa/metabolismo , Inflamación/patología , Interleucina-6/metabolismo , Pulmón/patología , Lesión Pulmonar/patología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Mucina 5AC/metabolismo , Moco/metabolismo , Estrés Oxidativo/efectos de los fármacos , Tamaño de la Partícula , Material Particulado/toxicidad , Fosforilación/efectos de los fármacos , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA