Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Añadir filtros








Intervalo de año
1.
Experimental & Molecular Medicine ; : 435-444, 2008.
Artículo en Inglés | WPRIM | ID: wpr-153293

RESUMEN

Repeated electroconvulsive seizure (ECS), a model for electroconvulsive therapy (ECT), exerts neuroprotective and proliferative effects in the brain. This trophic action of ECS requires inhibition of apoptotic activity, in addition to activation of survival signals. c-Myc plays an important role in apoptosis of neurons, in cooperation with the Bcl-2 family proteins, and its activity and stability are regulated by phosphorylation and ubiquitination. We examined c-Myc and related proteins responsible for apoptosis after repeated ECS. In the rat frontal cortex, repeated ECS for 10 days reduced the total amount of c-Myc, while increasing phosphorylation of c-Myc at Thr58, which reportedly induces degradation of c-Myc. As expected, ubiquitination of both phosphorylated and total c-Myc increased after 10 days ECS, suggesting that ECS may reduce c-Myc protein level via ubiquitination-proteasomal degradation. Bcl-2 family proteins, caspase, and poly(ADP-ribose) polymerase (PARP) were investigated to determine the consequence of down-regulating c-Myc. Protein levels of Bcl-2, Bcl-X(L), Bax, and Bad showed no change, and cleavage of caspase-3 and PARP were not induced. However, phosphorylation of Bad at Ser-155 and binding of Bad to 14-3-3 increased without binding to Bcl-X(L) after repeated ECS, implying that repeated ECS sequesters apoptotic Bad and frees pro-survival Bcl-X(L). Taken together, c-Myc down-regulation via ubiquitination-proteasomal degradation and Bad inactivation by binding to 14-3-3 may be anti-apoptotic mechanisms elicited by repeated ECS in the rat frontal cortex. This finding further supports the trophic effect of ECS blocking apoptosis as a possible therapeutic effect of ECT.


Asunto(s)
Animales , Masculino , Ratas , Proteínas 14-3-3/metabolismo , Regulación hacia Abajo , Terapia Electroconvulsiva/efectos adversos , Lóbulo Frontal/metabolismo , Modelos Biológicos , Neuronas/metabolismo , Periodicidad , Fosforilación , Unión Proteica , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Ratas Sprague-Dawley , Convulsiones/etiología , Células Tumorales Cultivadas , Ubiquitinación , Proteína Letal Asociada a bcl/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA