RESUMEN
Protein kinase C(PKC) is a type of protein kinase widely involved in cell proliferation and development, but the developmental mechanism in the gonads of androgynous animals is still unclear. In order to explore the role of protein kinase C in the development of Whitmania pigra germ cells, the Wh. pigra PKC(Wp-PKC) gene was cloned, bioinformatics analysis was conducted, and fluorescent quantitative PCR was used to analyze the expression of female and male gonads. The results showed that:(1)The cloned Wp-PKC had a full length of 2 580 bp, a relative molecular weight of 76 555.19, and contains an open reading frame encoding 670 amino acids, Wp-PKC was closely related to Danio rerio PKC-α and rat PKC-γ. The similarity of amino acid sequence was 55% and 58%.(2)The protein encoded by Wp-PKC had no signal peptide and was a hydrophilic protein. The secondary structure is mainly composed of random coils, α-helices, extended chains, folds and folds, with the largest proportion of random coils and α-helices. Wp-PKC protein does not contain a transmembrane domain. Multiple sequence alignment and domain prediction analysis show that Wp-PKC contains 4 conserved domains of classical protein kinase C.(3)Fluorescence quantitative results showed that the expression of Wp-PKC in Wh. pigra gonads was positively correlated with the development of germ cells, and the expression in male gonads was significantly higher than that in female gonads. In summary, Wp-PKC is a classic PKC, and Wp-PKC may promote the development of Wh. pigra, especially the development of male gonads, and provide references for further research on the developmental mechanisms of Wh. pigra.
Asunto(s)
Animales , Femenino , Masculino , Ratas , Clonación Molecular , Gónadas , Sanguijuelas/genética , Ovario , Proteína Quinasa C/genéticaRESUMEN
This study was undertaken to identify genetic polymorphisms that are associated with the risk of an elevated fasting glucose (FG) level using genome-wide analyses. We explored a quantitative trait locus (QTL) for FG level in a genome-wide study from a Korean twin-family cohort (the Healthy Twin Study) using a combined linkage and family-based association analysis approach. We investigated 1,754 individuals, which included 432 families and 219 pairs of monozygotic twins. Regions of chromosomes 2q23.3-2q31.1, 15q26.1-15q26.3, 16p12.1, and 20p13-20p12.2, were found to show evidence of linkage with FG level, and several markers in these regions were found to be significantly associated with FG level using family-based or general association tests. In particular, a single-nucleotide polymorphism (rs6138953) on the PTPRA gene in the 20p13 region (combined P = 1.8 x 10(-6)) was found to be associated with FG level, and the PRKCB1 gene (in 16p12.1) to be possibly associated with FG level. In conclusion, multiple regions of chromosomes 2q23.3-2q31.1, 15q26.1-15q26.3, 16p12.1, and 20p13-20p12.2 are associated with FG level in our Korean twin-family cohort. The combined approach of genome-wide linkage and family-based association analysis is useful to identify novel or known genetic regions concerning FG level in a family cohort study.
Asunto(s)
Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pueblo Asiatico/genética , Glucemia/genética , Cromosomas Humanos Par 15/genética , Cromosomas Humanos Par 16/genética , Cromosomas Humanos Par 2/genética , Cromosomas Humanos Par 20/genética , Estudios de Cohortes , Familia , Ligamiento Genético , Estudio de Asociación del Genoma Completo , Genotipo , Polimorfismo de Nucleótido Simple , Proteína Quinasa C/genética , Sitios de Carácter Cuantitativo , Proteínas Tirosina Fosfatasas Clase 4 Similares a Receptores/genética , República de Corea , Gemelos Monocigóticos/genéticaRESUMEN
Although 4,4'-diaminodiphenylsulfone (DDS, dapsone) has been used to treat several dermatologic conditions, including Hansen disease, for the past several decades, its mode of action has remained a topic of debate. We recently reported that DDS treatment significantly extends the lifespan of the nematode C. elegans by decreasing the generation of reactive oxygen species. Additionally, in in vitro experiments using non-phagocytic human fibroblasts, we found that DDS effectively counteracted the toxicity of paraquat (PQ). In the present study, we extended our work to test the protective effect of DDS against PQ in vivo using a mouse lung injury model. Oral administration of DDS to mice significantly attenuated the lung tissue damage caused by subsequent administration of PQ. Moreover, DDS reduced the local expression of mRNA transcripts encoding inflammation-related molecules, including endothelin-1 (ET-1), macrophage inflammatory protein-1alpha (MIP-1alpha), and transforming growth factor-beta (TGF-beta). In addition, DDS decreased the PQ-induced expression of NADPH oxidase mRNA and activation of protein kinase Cmicro (PKCmicro). DDS treatment also decreased the PQ-induced generation of superoxide anions in mouse lung fibroblasts. Taken together, these data suggest the novel efficacy of DDS as an effective protective agent against oxidative stress-induced tissue damages.
Asunto(s)
Animales , Masculino , Ratones , Células Cultivadas , Quimiocina CCL3/efectos de los fármacos , Dapsona/administración & dosificación , Endotelina-1/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Herbicidas/antagonistas & inhibidores , Lesión Pulmonar/inducido químicamente , Ratones Endogámicos BALB C , Estrés Oxidativo , Paraquat/antagonistas & inhibidores , Sustancias Protectoras/administración & dosificación , Proteína Quinasa C/genética , Superóxidos/análisis , Factor de Crecimiento Transformador beta/efectos de los fármacosRESUMEN
Endothelins (ETs) and sarafotoxins (SRTXs) belong to a family of vasoconstrictor peptides, which regulate pigment migration and/or production in vertebrate pigment cells. The teleost Carassius auratus erythrophoroma cell line, GEM-81, and Mus musculus B16 melanocytes express rhodopsin, as well as the ET receptors, ETB and ETA, respectively. Both cell lines are photoresponsive, and respond to light with a decreased proliferation rate. For B16, the doubling time of cells kept in 14-h light (14L):10-h darkness (10D) was higher compared to 10L:14D, or to DD. The doubling time of cells kept in 10L:14D was also higher compared to DD. Using real-time PCR, we demonstrated that SRTX S6c (12-h treatment, 100 pM and 1 nM; 24-h treatment, 1 nM) and ET-1 (12-h treatment, 10 and 100 pM; 24- and 48-h treatments, 100 pM) increased rhodopsin mRNA levels in GEM-81 and B16 cells, respectively. This modulation involves protein kinase C (PKC) and the mitogen-activated protein kinase cascade in GEM-81 cells, and phospholipase C, Ca2+, calmodulin, a Ca2+/calmodulin-dependent kinase, and PKC in B16 cells. Cells were kept under constant darkness throughout the gene expression experiments. These results show that rhodopsin mRNA levels can be modulated by SRTXs/ETs in vertebrate pigment cells. It is possible that SRTX S6c binding to the ETB receptors in GEM-81 cells, and ET-1 binding to ETA receptors in B16 melanocytes, although activating diverse intracellular signaling mechanisms, mobilize transcription factors such as c-Fos, c-Jun, c-Myc, and neural retina leucine zipper protein. These activated transcription factors may be involved in the positive regulation of rhodopsin mRNA levels in these cell lines.
Asunto(s)
Animales , Ratones , Proliferación Celular/efectos de los fármacos , Endotelinas/farmacología , Rodopsina/efectos de los fármacos , Vasoconstrictores/farmacología , Venenos de Víboras/farmacología , Línea Celular , Regulación de la Expresión Génica , Carpa Dorada , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/genética , Reacción en Cadena de la Polimerasa , Proteína Quinasa C/efectos de los fármacos , Proteína Quinasa C/genética , ARN Mensajero/efectos de los fármacos , ARN Mensajero/genética , Rodopsina/genética , Rodopsina/metabolismoRESUMEN
In a previous study, the Schistosoma mansoni Rho1 protein was able to complement Rho1 null mutant Saccharomyces cerevisiae cells at restrictive temperatures and under osmotic stress (low calcium concentration) better than the human homologue (RhoA). It is known that under osmotic stress, the S. cerevisiae Rho1 triggers two distinct pathways: activation of the membrane 1,3-beta-glucan synthase enzymatic complex and activation of the protein kinase C1 signal transduction pathway, promoting the transcription of response genes. In the present work the SmRho1 protein and its mutants smrho1E97P, smrho1L101T, and smrho1E97P, L101T were used to try to clarify the basis for the differential complementation of Rho1 knockout yeast strain by the human and S. mansoni genes. Experiments of functional complementation in the presence of caffeine and in the presence of the osmotic regulator sorbitol were conducted. SmRho1 and its mutants showed a differential complementation of the yeast cells in the presence of caffeine, since smrho1E97P and smrho1E97P, L101T mutants showed a delay in the growth when compared to the yeast complemented with the wild type SmRho1. However, in the presence of sorbitol and caffeine the wild type SmRho1 and mutants showed a similar complementation phenotype, as they allowed yeast growth in all caffeine concentrations tested.
Asunto(s)
Animales , Humanos , Cafeína/farmacología , Proteína Quinasa C/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Schistosoma mansoni/genética , Proteínas de Unión al GTP rho/genética , Genes de Helminto , Mutación , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Schistosoma mansoni/metabolismo , Transducción de Señal/genética , Proteínas de Unión al GTP rho/metabolismoRESUMEN
Epidermal keratinocyte differentiation is a tightly regulated stepwise process that requires protein kinase C (PKC) activation. Studies on cultured mouse keraitnocytes induced to differentiate with Ca2+ have indirectly implicated the involvement of PKC alpha isoform. When PKC alpha was overexpressed in undifferentiated keratinocytes using adenoviral system, expressions of differentiation markers such as loricrin, filaggrin, keratin 1 (MK1) and keratin 10 (MK10) were increased, and ERK1/2 phosphorylation was concurrently induced without change of other MAPK such as p38 MAPK and JNK1/2. Similarly, transfection of PKC alphakinase active mutant (PKC alpha- CAT) in the undifferentiated keratinocyte, but not PKC beta-CAT, also increased differentiation marker expressions. On the other hand, PKC alphadominant negative mutant (PKC beta-KR) reduced Ca2+ -mediated differentiation marker expressions, while PKC beta-KR did not, suggesting that PKC alphais responsible for keratinocyte differentiation. When downstream pathway of PKC alphain Ca2+ - mediated differentiation was examined, ERK1/2, p38 MAPK and JNK1/2 phosphorylations were increased by Ca2+ shift. Treatment of keratinocytes with PD98059, MEK inhibitor, and SB20358, p38 MAPK inhibitor, before Ca2+ shift induced morphological changes and reduced expressions of differentiation markers, but treatment with SP60012, JNK1/2 inhibitor, did not change at all. Dominant negative mutants of ERK1/2 and p38 MAPK also inhibited the expressions of differentiation marker expressions in Ca2+ shifted cells. The above results indicate that both ERK1/2 and p38 MAPK may be involved in Ca2+- mediated differentiation, and that only ERK1/2 pathway is specific for PKCa-mediated differentiation in mouse keratinocytes.