Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Añadir filtros








Intervalo de año
1.
Biol. Res ; 50: 40, 2017. graf
Artículo en Inglés | LILACS | ID: biblio-950887

RESUMEN

BACKGROUND: Programmed cell death 5 (PDCD5) is an apoptosis-related gene cloned from TF-1 cells whose primary biological functions are to promote apoptosis and immune regulation. The effects and mechanisms exerted by key mediators of arthritic inflammation remain unclear in PDCD5 transgenic (PDCD5 tg) mice. RESULTS: In the current study, PDCD5 tg mice inhibited the progression of adjuvant-induced arthritis, specifically decreasing clinical signs and histological damage, compared with arthritis control mice. Additionally, the ratio of CD4+IFN-γ+ cells (Th1) and CD4+IL-17A+ cells (Th17), as well as the mRNA expression of the pro-inflammatory mediators IFN-γ, IL-6, IL-17A and TNF-α, were decreased in PDCD5 tg mice, while CD4+CD25+Foxp3+ regulatory T (Treg) cells and the anti-inflammatory mediators IL-4 and IL-10 were increased. Furthermore, PDCD5 tg mice demonstrated reduced serum levels of IFN-γ, IL-6, IL-17A and TNF-α and increased levels of IL-4. CONCLUSIONS: Based on our data, PDCD5 exerts anti-inflammatory effects by modifying the T lymphocytes balance, inhibiting the production of pro-inflammatory mediators and promoting the secretion of anti-inflammatory cytokines, validating PDCD5 protein as a possible treatment for RA.


Asunto(s)
Animales , Masculino , Ratones , Artritis Experimental/metabolismo , Linfocitos T Reguladores/fisiología , Proteínas Reguladoras de la Apoptosis/fisiología , Proteínas de Neoplasias/fisiología , Artritis Experimental/inmunología , Ratones Transgénicos , Proteínas Reguladoras de la Apoptosis/genética , Ratones Endogámicos C57BL , Proteínas de Neoplasias/genética
2.
Invest. clín ; 56(1): 74-99, mar. 2015. ilus, graf
Artículo en Español | LILACS | ID: biblio-841069

RESUMEN

La inflamación es una respuesta biológica rápida del sistema inmune en tejidos vasculares, dirigida a eliminar estímulos capaces de producir daño y a iniciar la curación y la reparación. Los complejos macromoleculares denominados inflamasomas están constituidos por un receptor NOD (NLR), un receptor de AIM2 (ausente en melanoma 2) el ALR, la proteína tipo punto asociada a apoptosis (ASC) y la procaspasa-1, los cuales pueden ser activados por variación en la concentración iónica y de ATP intracelular y extracelular, por desestabilización del fagolisosoma, por internalización de cristales insolubles y por mecanismos de oxidoreducción, lo cual permitirá la activación de la plataforma molecular y el consiguiente procesamiento de las prointerleuquinas inflamatorias a sus formas activas. En la actualidad existen dos nodos de señalización utilizados por los inflamasomas: canónica y no canónica para generar respuestas efectoras. Datos recientes vinculan al inflamasoma NLRP3, la IL-1b y a la IL-18, en el desarrollo y evolución de enfermedades tales como: ateroesclerosis, diabetes tipo II, hiperhomocisteinemia, gota, malaria e hipertensión arterial e identificaron esta cascada, como un blanco quimioterapéutico ideal para la prevención de estas patologías. En esta revisión se discutirán los mecanismos de activación y regulación del inflamasoma que estimulan, modulan y resuelven los procesos inflamatorios.


Inflammation is a rapid biologic response of the immune system in vascular tissues, directed to eliminate stimuli capable of causing damage and begin the process of repair. The macromolecular complexes known as “inflammasomes” are formed by a receptor, either NOD (NLR) or ALR, the receptor absent in melanoma 2 (AIM2). In addition, the inflammasome is formed by the speck-like protein associated to apoptosis (ASC) and procaspase-1, that may be activated by variations in the ionic and intracellular and extracellular ATP concentrations; and the loss of stabilization of the fagolisosomme by internalization of insoluble crystals and redox mechanisms. As a result, there is activation of the molecular platform and the processing of inflammatory prointerleukins to their active forms. There are two modalities of activation of the inflammasome: canonical and non-canonical, both capable of generating effector responses. Recent data associate NLRP 3, IL-1b and IL-18 in the pathogenesis of a variety of diseases, including atherosclerosis, type II diabetes, hyperhomocysteinemia, gout, malaria and hypertension. The inflammasome cascade is emerging as a new chemotherapeutic target in these diseases. In this review we shall discuss the mechanisms of activation and regulation of the inflammasome that stimulate, modulate and resolve inflammation.


Asunto(s)
Humanos , Inflamasomas/fisiología , Proteínas Portadoras/fisiología , Citocinas/fisiología , Proteínas Adaptadoras Transductoras de Señales/fisiología , Proteínas Reguladoras de la Apoptosis/fisiología , Proteínas NLR , Proteína con Dominio Pirina 3 de la Familia NLR
3.
Clinics ; 68(3): 297-303, 2013. ilus, graf, tab
Artículo en Inglés | LILACS | ID: lil-671418

RESUMEN

OBJECTIVES: Bladder cancer represents 3% of all carcinomas in the Brazilian population and ranks second in incidence among urological tumors, after prostate cancer. The loss of p53 function is the main genetic alteration related to the development of high-grade muscle-invasive disease. Prima-1 is a small molecule that restores tumor suppressor function to mutant p53 and induces cancer cell death in various cancer types. Our aim was to investigate the ability of Prima-1 to induce apoptosis after DNA damage in bladder cancer cell lines. METHOD: The therapeutic effect of Prima-1 was studied in two bladder cancer cell lines: T24, which is characterized by a p53 mutation, and RT4, which is the wild-type for the p53 gene. Morphological features of apoptosis induced by p53, including mitochondrial membrane potential changes and the expression of thirteen genes involved in apoptosis, were assessed by microscopic observation and quantitative real-time PCR (qRT-PCR). RESULTS: Prima-1 was able to reactivate p53 function in the T24 (p53 mt) bladder cancer cell line and promote apoptosis via the induction of Bax and Puma expression, activation of the caspase cascade and disruption of the mitochondrial membrane in a BAK-independent manner. CONCLUSION: Prima-1 is able to restore the transcriptional activity of p53. Experimental studies in vivo may be conducted to test this molecule as a new therapeutic agent for urothelial carcinomas of the bladder, which characteristically harbor p53 mutations.


Asunto(s)
Humanos , Proteínas Reguladoras de la Apoptosis/fisiología , Carcinoma/metabolismo , /genética , /metabolismo , Neoplasias de la Vejiga Urinaria/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Carcinoma/patología , Línea Celular Tumoral/metabolismo , Expresión Génica/genética , Mutación/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , /genética , Neoplasias de la Vejiga Urinaria/patología
4.
Invest. clín ; 53(1): 84-110, mar. 2012. ilus
Artículo en Español | LILACS | ID: lil-664568

RESUMEN

El Ca2+ es un segundo mensajero que regula funciones directamente relacionadas con el cáncer como la proliferación, diferenciación y la apoptosis. La concentración intracelular de Ca2+ ([Ca2+]i) está altamente regulada por diversos mecanismos entre los que destacan canales iónicos, la Ca2+-ATPasa del retículo endoplasmático (SERCA) y de la membrana plasmática (PMCA), y el transporte de Ca2+ mitocondrial. En el cáncer, la célula tumoral prolifera sin control tras su incapacidad de reconocer señales apoptóticas. La apoptosis es mediada a través de cambios en la actividad de ciertas proteínas como las caspasas y miembros de la familia Bcl-2. Adicionalmente, el “estrés del retículo”, promovido por la acumulación y agregación de proteínas mal plegadas en el interior del retículo endoplasmático (RE), puede desencadenar la apoptosis. El “estrés del retículo” es inducido por una variedad de agentes, entre los que destaca la tapsigargina, inhibidor específico de la SERCA, la cual promueve un notable aumento en la [Ca2+]i, induciendo además apoptosis. En consecuencia, actualmente se están ensayando exitosamente derivados de la tapsigargina como agentes antineoplásicos. El Ca2+ es transferido a la mitocondria desencadenando señales apoptóticas. Por otra parte, los esfingolípidos, como la ceramida y la esfingosina, y sus derivados fosforilados, la ceramida-1-fosfato y la esfingosina-1-fosfato, los cuales regulan la [Ca2+]i, también están estrechamente vinculados con la señalización intracelular en procesos relacionados con el cáncer. Esta revisión discute nuevas evidencias sobre el efecto de estos esfingolípidos en la homeostasis de Ca+2 intracelular y su conexión con la apoptosis y el cáncer.


Ca2+ is a second messenger which regulates many functions directly related with cancer such as proliferation, differentiation and apoptosis. The intracellular Ca2+ concentration ([Ca2+]i) is finely regulated by several mechanisms, among them ionic channels, the endoplasmic reticulum Ca2+-ATPase (SERCA), the plasma membrane calcium pump (PMCA) and the mitochondrial Ca2+ transport. In cancer, the tumour cell proliferates without control since the capacity to recognize apoptotic signals has been lost. The apoptosis is regulated by changes in several proteins, as caspases and the Bcl-2 family members, among others. Additionally, the “reticulum stress”, promoted by the accumulation and aggregation of unfolded proteins in the interior of the endoplasmic reticulum (ER), ussually leads to apoptosis. The “reticulum stress” can be induced by several agents, remarkably with thapsigargin, a selective inhibitor of the SERCA, which in turn induces a large increment in [Ca2+]I, leading to apoptosis. As a consequence, currently, derivatives of thapsigargin are successfully been assayed as anti-neoplastic agents. Ca2+ is then transferred to the mitochondria, where it is known to constitute a main apoptotic signal. On the other hand, several sphingolipids, such as ceramide and sphingosine, and their phosphorylated derivatives ceramide-1-phosphate and sphingosine-1-phosphate, directly involved in the [Ca2+]I regulation, are also recognized as signal messengers related with cancer processes. In this review we discuss new evidences on the effect of several sphingolipids in the intracellular Ca2+ homeostasis and its relationship with apoptosis and cancer.


Asunto(s)
Humanos , Apoptosis/fisiología , Señalización del Calcio , Neoplasias/fisiopatología , Esfingolípidos/fisiología , Proteínas Reguladoras de la Apoptosis/fisiología , Apoptosis/efectos de los fármacos , Canales de Calcio/fisiología , Señalización del Calcio/fisiología , Ceramidas/fisiología , Estrés del Retículo Endoplásmico , Transporte Iónico , Mitocondrias/fisiología , Proteínas de Neoplasias/fisiología , Fosforilación , Transducción de Señal/fisiología , Esfingosina/fisiología
5.
Invest. clín ; 52(4): 376-396, dic. 2011.
Artículo en Español | LILACS | ID: lil-659227

RESUMEN

El cáncer de próstata presenta una progresión andrógeno-dependiente mediada por el receptor de andrógeno (AR), por lo que el bloqueo androgénico es la terapia estándar para su tratamiento en estado avanzado. Sin embargo, a pesar de una sensibilidad inicial, estos cánceres usualmente evolucionan hacia un estado hormono-resistente. Esta resistencia puede ser debida a una amplificación del gen AR, a sus mutaciones y al aumento en la expresión de proteínas co-activadoras. Igualmente, el receptor AR puede permanecer activo, independientemente de la fijación del ligando por fosforilación de factores de crecimiento y de citosinas. Adicionalmente, hay otras posibles vías independientes del receptor AR, como lo ejemplifica la adquisición del fenotipo neuroendocrino. En esta revisión se examinan tanto los mecanismos moleculares involucrados en la progresión del cáncer de próstata así como la forma en que sus células evaden la apoptosis.


Prostate cancer presents an androgen-dependent growth mediated by the androgen receptor (AR). Androgen pathway blockage is the standard therapy for the treatment of prostate cancer at an advanced stage. In spite of an initial sensitivity, prostate cancer usually becomes refractory to hormone treatment. This resistance can be due to the amplification of the AR gene, AR mutations and the increase in co-activator protein expression. Likewise, growth factors and cytokines can induce AR phosphorylation, independently of ligand fixation. Moreover, there are other AR-independent pathways, such as the acquisition of the neuroendocrine phenotype. In this review, we examine the molecular mechanisms that are involved in the progression of prostate cancer, as well as the ways its cells evade apoptosis.


Asunto(s)
Animales , Humanos , Masculino , Ratones , Andrógenos , Apoptosis , Adenocarcinoma/patología , Neoplasias Hormono-Dependientes/patología , Neoplasias de la Próstata/patología , Adenocarcinoma/tratamiento farmacológico , Antineoplásicos Hormonales/farmacología , Antineoplásicos Hormonales/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Proteínas Reguladoras de la Apoptosis/fisiología , Progresión de la Enfermedad , Resistencia a Antineoplásicos , Terapia Molecular Dirigida , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/fisiología , Neoplasias Hormono-Dependientes/tratamiento farmacológico , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Neoplasias de la Próstata/tratamiento farmacológico , Receptores Androgénicos/genética , Receptores Androgénicos/fisiología , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA