Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros








Intervalo de año
1.
Acta Physiologica Sinica ; (6): 153-159, 2023.
Artículo en Chino | WPRIM | ID: wpr-980992

RESUMEN

This study was aimed to investigate the effect of hypoxia on lipopolysaccharide (LPS)-induced CXC-chemokine ligand-10 (CXCL10) expression and the underlying mechanism. C57BL/6J mice were randomly divided into control, hypoxia, LPS, and hypoxia combined with LPS groups. The LPS group was intraperitoneally injected with 0.5 mg/kg LPS, and the hypoxia group was placed in a hypobaric hypoxia chamber (simulated altitude of 6 000 m). The serum and hippocampal tissue samples were collected after 6 h of the treatment. The levels of CXCL10 in the serum and hippocampal tissue of mice were detected by ELISA. The microglia cell line BV2 and primary microglia were stimulated with hypoxia (1% O2) and/or LPS (100 ng/mL) for 6 h. The mRNA expression level of CXCL10 and its content in culture supernatant were detected by real-time quantitative PCR and ELISA, respectively. The phosphorylation levels of nuclear factor κB (NF-κB) signaling pathway-related proteins, p65 and IκBα, were detected by Western blot. Moreover, after NF-κB signaling pathway being blocked with a small molecular compound, PDTC, CXCL10 mRNA expression level was detected in the BV2 cells. The results showed that in the LPS-induced mouse inflammatory model, hypoxia treatment could promote LPS-induced up-regulation of CXCL10 in both serum and hippocampus. Compared with the cells treated with LPS alone, the expression of CXCL10 mRNA and the content of CXCL10 in the culture supernatant of BV2 cells treated with hypoxia combined with LPS were significantly increased. The CXCL10 mRNA level of primary microglial cells treated with hypoxia combined with LPS was significantly up-regulated. Compared with the cells treated with hypoxia or LPS alone, the phosphorylation levels of p65 and IκBα in the BV2 cells treated with hypoxia combined with LPS were significantly increased. PDTC blocked the induction of CXCL10 gene expression by LPS in the BV2 cells. These results suggest that hypoxia promotes LPS-induced expression of CXCL10 in both animal and cell models, and NF-κB signaling pathway plays an important role in this process.


Asunto(s)
Animales , Ratones , Quimiocinas CXC/farmacología , Hipoxia , Ligandos , Lipopolisacáridos/farmacología , Ratones Endogámicos C57BL , Microglía/metabolismo , FN-kappa B/metabolismo , Inhibidor NF-kappaB alfa/farmacología , ARN Mensajero/metabolismo
2.
Experimental & Molecular Medicine ; : 257-262, 2001.
Artículo en Inglés | WPRIM | ID: wpr-144638

RESUMEN

His-Phe-Tyr-Leu-Pro-Met (HFYLPM) is a synthetic peptide that stimulates Jurkat T cells resulting in intracellular calcium ([Ca2+]i) increase in a pertussis toxin (PTX)-sensitive manner. We have examined the physiological role of the peptide in T cell activity by comparative investigation of intracellular signaling pathways accompanied with HFYLPM-induced T cell chemotaxis with a well-known chemokine, stromal cell-derived factor-1 (SDF-1)-induced signalings. Wortmannin and genistein inhibited both of HFYLPM- and SDF-1-induced Jurkat T cell chemotaxis indicating that phosphoinositide-3-kinase and tyrosine kinase activity were required for the processes. However, U-73122 and BAPTA/AM preferentially blocked HFYLPM- but not SDF-1-induced T cell chemotaxis. It indicates that phospholipase C/calcium signaling is necessary for only chemotaxis by HFYLPM. One of the well-known cellular molecules involving chemotaxis, extracellular signal-regulated protein kinase (ERK), was activated by SDF-1 but not by HFYLPM ruling out a possible role of ERK on the peptide-mediated chemotaxis. These results indicate that the synthetic peptide, HFYLPM, stimulates T cell chemotaxis showing unique signaling and provide a useful tool for the study of T cell activation mechanism.


Asunto(s)
Humanos , Fosfatidilinositol 3-Quinasa/metabolismo , Androstadienos/farmacología , Calcio/metabolismo , Línea Celular , Quimiocinas CXC/farmacología , Quimiotaxis de Leucocito/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Genisteína/farmacología , Células Jurkat , Oligopéptidos , Fragmentos de Péptidos/síntesis química , Toxina del Pertussis , Fosfolipasas de Tipo C/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Linfocitos T/efectos de los fármacos , Factores de Virulencia de Bordetella/farmacología
3.
Experimental & Molecular Medicine ; : 257-262, 2001.
Artículo en Inglés | WPRIM | ID: wpr-144626

RESUMEN

His-Phe-Tyr-Leu-Pro-Met (HFYLPM) is a synthetic peptide that stimulates Jurkat T cells resulting in intracellular calcium ([Ca2+]i) increase in a pertussis toxin (PTX)-sensitive manner. We have examined the physiological role of the peptide in T cell activity by comparative investigation of intracellular signaling pathways accompanied with HFYLPM-induced T cell chemotaxis with a well-known chemokine, stromal cell-derived factor-1 (SDF-1)-induced signalings. Wortmannin and genistein inhibited both of HFYLPM- and SDF-1-induced Jurkat T cell chemotaxis indicating that phosphoinositide-3-kinase and tyrosine kinase activity were required for the processes. However, U-73122 and BAPTA/AM preferentially blocked HFYLPM- but not SDF-1-induced T cell chemotaxis. It indicates that phospholipase C/calcium signaling is necessary for only chemotaxis by HFYLPM. One of the well-known cellular molecules involving chemotaxis, extracellular signal-regulated protein kinase (ERK), was activated by SDF-1 but not by HFYLPM ruling out a possible role of ERK on the peptide-mediated chemotaxis. These results indicate that the synthetic peptide, HFYLPM, stimulates T cell chemotaxis showing unique signaling and provide a useful tool for the study of T cell activation mechanism.


Asunto(s)
Humanos , Fosfatidilinositol 3-Quinasa/metabolismo , Androstadienos/farmacología , Calcio/metabolismo , Línea Celular , Quimiocinas CXC/farmacología , Quimiotaxis de Leucocito/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Genisteína/farmacología , Células Jurkat , Oligopéptidos , Fragmentos de Péptidos/síntesis química , Toxina del Pertussis , Fosfolipasas de Tipo C/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Linfocitos T/efectos de los fármacos , Factores de Virulencia de Bordetella/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA