Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
Chinese Journal of Biotechnology ; (12): 1731-1746, 2023.
Artículo en Chino | WPRIM | ID: wpr-981166

RESUMEN

Adiponectin receptor 1 (AdipoR1) and Adiponectin receptor 2 (AdipoR2) can bind to adiponectin (AdipoQ) secreted by adipose tissue to participate in various physiological functions of the body. In order to explore the role of AdipoR1 and AdipoR2 in amphibians infected by Aeromonas hydrophila (Ah), the genes adipor1 and adipor2 of Rana dybowskii were cloned by reverse transcription-polymerase chain reaction (RT-PCR) and analyzed by bioinformatics. The tissue expression difference of adipor1 and adipor2 was analyzed by real-time fluorescence quantitative polymerase chain reaction (qRT-PCR), and an inflammatory model of R. dybowskii infected by Ah was constructed. The histopathological changes were observed by hematoxylin-eosin staining (HE staining); the expression profiles of adipor1 and adipor2 after infection were dynamically detected by qRT-PCR and Western blotting. The results show that AdipoR1 and AdipoR2 are cell membrane proteins with seven transmembrane domains. Phylogenetic tree also shows that AdipoR1 and AdipoR2 cluster with the amphibians in the same branch. qRT-PCR and Western blotting results show that adipor1 and adipor2 were up-regulated at different levels of transcription and translation upon Ah infection, but the response time and level were different. It is speculated that AdipoR1 and AdipoR2 participate in the process of bacterial immune response, providing a basis for further exploring the biological functions of AdipoR1 and AdipoR2 in amphibians.


Asunto(s)
Animales , Receptores de Adiponectina/metabolismo , Filogenia , Adiponectina/metabolismo , Clonación Molecular , Ranidae/genética
2.
Chinese Journal of Biotechnology ; (12): 1859-1873, 2022.
Artículo en Chino | WPRIM | ID: wpr-927823

RESUMEN

Leptin receptor overlapping transcript (LepROT) plays multiple roles in the regulation of immune systems. However, very little information is available about the anti-infectious mechanisms of amphibians LepROT. In this study, the cDNA sequence of the Rana dybowskii LepROT gene was determined by using RT-PCR and bioinformatics analysis. Then, the Aeromonas hydrophila (Ah) and lipopolysaccharides (LPS) infected models of R. dybowskii was constructed to obtain histopathological characteristics. Constitutive expression of LepROT mRNA and NF-κB signaling pathway were detected by real-time quantitative PCR. The full-length cDNA of LepROT gene was 396 bp and encoded 131 amino acids. Amino acid sequence analysis revealed LepROT shares 93.74% and 86.39% identity with homologues from other amphibians and mammals respectively, and the LepROT gene was quite conserved among different species. After infection, the relative expression levels of LepROT, NF-κB, IKKα and IKKβ mRNA were all significantly upregulated (P < 0.01), but showed a diverse temporal pattern of up-regulation in different tissues. Therefore, it was proposed that the LepROT gene of R. dybowskii might activate the NF-κB signaling pathway to exert anti-infectious effects, thus providing evidence for further extending the biological function of LepROT.


Asunto(s)
Animales , Clonación Molecular , ADN Complementario , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Mamíferos/metabolismo , FN-kappa B/genética , Filogenia , ARN Mensajero/genética , Ranidae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA