Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Neuroscience Bulletin ; (6): 881-892, 2023.
Artículo en Inglés | WPRIM | ID: wpr-982411

RESUMEN

Mutations in genes encoding amyloid precursor protein (APP) and presenilins (PSs) cause familial forms of Alzheimer's disease (AD), a neurodegenerative disorder strongly associated with aging. It is currently unknown whether and how AD risks affect early brain development, and to what extent subtle synaptic pathology may occur prior to overt hallmark AD pathology. Transgenic mutant APP/PS1 over-expression mouse lines are key tools for studying the molecular mechanisms of AD pathogenesis. Among these lines, the 5XFAD mice rapidly develop key features of AD pathology and have proven utility in studying amyloid plaque formation and amyloid β (Aβ)-induced neurodegeneration. We reasoned that transgenic mutant APP/PS1 over-expression in 5XFAD mice may lead to neurodevelopmental defects in early cortical neurons, and performed detailed synaptic physiological characterization of layer 5 (L5) neurons from the prefrontal cortex (PFC) of 5XFAD and wild-type littermate controls. L5 PFC neurons from 5XFAD mice show early APP/Aβ immunolabeling. Whole-cell patch-clamp recording at an early post-weaning age (P22-30) revealed functional impairments; although 5XFAD PFC-L5 neurons exhibited similar membrane properties, they were intrinsically less excitable. In addition, these neurons received smaller amplitude and frequency of miniature excitatory synaptic inputs. These functional disturbances were further corroborated by decreased dendritic spine density and spine head volumes that indicated impaired synapse maturation. Slice biotinylation followed by Western blot analysis of PFC-L5 tissue revealed that 5XFAD mice showed reduced synaptic AMPA receptor subunit GluA1 and decreased synaptic NMDA receptor subunit GluN2A. Consistent with this, patch-clamp recording of the evoked L23>L5 synaptic responses revealed a reduced AMPA/NMDA receptor current ratio, and an increased level of AMPAR-lacking silent synapses. These results suggest that transgenic mutant forms of APP/PS1 overexpression in 5XFAD mice leads to early developmental defects of cortical circuits, which could contribute to the age-dependent synaptic pathology and neurodegeneration later in life.


Asunto(s)
Ratones , Animales , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Ratones Transgénicos , Neuronas/metabolismo , Receptores AMPA/metabolismo , Modelos Animales de Enfermedad
2.
Neuroscience Bulletin ; (6): 841-856, 2022.
Artículo en Inglés | WPRIM | ID: wpr-939846

RESUMEN

Epilepsy is a common and severe brain disease affecting >65 million people worldwide. Recent studies have shown that kinesin superfamily motor protein 17 (KIF17) is expressed in neurons and is involved in regulating the dendrite-targeted transport of N-methyl-D-aspartate receptor subtype 2B (NR2B). However, the effect of KIF17 on epileptic seizures remains to be explored. We found that KIF17 was mainly expressed in neurons and that its expression was increased in epileptic brain tissue. In the kainic acid (KA)-induced epilepsy mouse model, KIF17 overexpression increased the severity of epileptic activity, whereas KIF17 knockdown had the opposite effect. In electrophysiological tests, KIF17 regulated excitatory synaptic transmission, potentially due to KIF17-mediated NR2B membrane expression. In addition, this report provides the first demonstration that KIF17 is modified by SUMOylation (SUMO, small ubiquitin-like modifier), which plays a vital role in the stabilization and maintenance of KIF17 in epilepsy.


Asunto(s)
Animales , Ratones , Epilepsia/metabolismo , Cinesinas/metabolismo , Neuronas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Convulsiones/metabolismo
3.
Asian Journal of Andrology ; (6): 213-218, 2022.
Artículo en Inglés | WPRIM | ID: wpr-928528

RESUMEN

Experimental autoimmune prostatitis (EAP)-induced persistent inflammatory immune response can significantly upregulate the expression of N-methyl-D-aspartic acid (NMDA) receptors in the paraventricular nucleus (PVN). However, the mechanism has not yet been elucidated. Herein, we screened out the target prostate-derived inflammation cytokines (PDICs) by comparing the inflammatory cytokine levels in peripheral blood and cerebrospinal fluid (CSF) between EAP rats and their controls. After identifying the target PDIC, qualified males in initial copulatory behavior testing (CBT) were subjected to implanting tubes onto bilateral PVN. Next, they were randomly divided into four subgroups (EAP-1, EAP-2, Control-1, and Control-2). After 1-week recovery, EAP-1 rats were microinjected with the target PDIC inhibitor, Control-1 rats were microinjected with the target PDIC, while the EAP-2 and Control-2 subgroups were only treated with the same amount of artificial CSF (aCSF). Results showed that only interleukin-1β(IL-1β) had significantly increased mRNA-expression in the prostate of EAP rats compared to the controls (P < 0.001) and significantly higher protein concentrations in both the serum (P = 0.001) and CSF (P < 0.001) of the EAP groups compared to the Control groups. Therefore, IL-1β was identified as the target PDIC which crosses the blood-brain barrier, thereby influencing the central nervous system. Moreover, the EAP-1 subgroup displayed a gradually prolonged ejaculation latency (EL) in the last three CBTs (all P < 0.01) and a significantly lower expression of NMDA NR1 subunit in the PVN (P = 0.043) compared to the respective control groups after a 10-day central administration of IL-1β inhibitors. However, the Control-1 subgroup showed a gradually shortened EL (P < 0.01) and a significantly higher NR1 expression (P = 0.004) after homochronous IL-1β administration. Therefore, we identified IL-1β as the primary PDIC which shortens EL in EAP rats. However, further studies should be conducted to elucidate the specific molecular mechanisms through which IL-1β upregulates NMDA expression.


Asunto(s)
Animales , Masculino , Ratas , Citocinas/metabolismo , Modelos Animales de Enfermedad , Eyaculación/fisiología , Interleucina-1beta/metabolismo , N-Metilaspartato/metabolismo , Próstata/metabolismo , Prostatitis/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
4.
Acta Academiae Medicinae Sinicae ; (6): 149-157, 2022.
Artículo en Chino | WPRIM | ID: wpr-927859

RESUMEN

N-methyl-D-aspartate receptor (NMDAR),an important ionic glutamate receptor and a ligand and voltage-gated ion channel characterized by complex composition and functions and wide distribution,plays a key role in the pathological and physiological process of diseases or stress states.NMDAR can mediate apoptosis through different pathways such as mitochondrial and endoplasmic reticulum damage,production of reactive oxygen species and peroxynitrite,and activation of mitogen-activated protein kinase and calpain.This paper reviews the structure,distribution,and biological characteristics of NMDAR and the mechanisms of NMDAR-mediated apoptosis.


Asunto(s)
Humanos , Apoptosis , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transducción de Señal
5.
Neuroscience Bulletin ; (6): 342-358, 2022.
Artículo en Inglés | WPRIM | ID: wpr-929097

RESUMEN

Central sensitization is essential in maintaining chronic pain induced by chronic pancreatitis (CP), but cortical modulation of painful CP remains elusive. Here, we examined the role of the anterior cingulate cortex (ACC) in the pathogenesis of abdominal hyperalgesia in a rat model of CP induced by intraductal administration of trinitrobenzene sulfonic acid (TNBS). TNBS treatment resulted in long-term abdominal hyperalgesia and anxiety in rats. Morphological data indicated that painful CP induced a significant increase in FOS-expressing neurons in the nucleus tractus solitarii (NTS) and ACC, and some FOS-expressing neurons in the NTS projected to the ACC. In addition, a larger portion of ascending fibers from the NTS innervated pyramidal neurons, the neural subpopulation primarily expressing FOS under the condition of painful CP, rather than GABAergic neurons within the ACC. CP rats showed increased expression of vesicular glutamate transporter 1, and increased membrane trafficking and phosphorylation of the N-methyl-D-aspartate receptor (NMDAR) subunit NR2B and the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) subunit GluR1 within the ACC. Microinjection of NMDAR and AMPAR antagonists into the ACC to block excitatory synaptic transmission significantly attenuated abdominal hyperalgesia in CP rats, which was similar to the analgesic effect of endomorphins injected into the ACC. Specifically inhibiting the excitability of ACC pyramidal cells via chemogenetics reduced both hyperalgesia and comorbid anxiety, whereas activating these neurons via optogenetics failed to aggravate hyperalgesia and anxiety in CP rats. Taken together, these findings provide neurocircuit, biochemical, and behavioral evidence for involvement of the ACC in hyperalgesia and anxiety in CP rats, as well as novel insights into the cortical modulation of painful CP, and highlights the ACC as a potential target for neuromodulatory interventions in the treatment of painful CP.


Asunto(s)
Animales , Ratas , Ansiedad/etiología , Dolor Crónico/etiología , Neuronas GABAérgicas , Giro del Cíngulo/metabolismo , Hiperalgesia/metabolismo , Pancreatitis Crónica/patología , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Ácido Trinitrobencenosulfónico/toxicidad
6.
China Journal of Chinese Materia Medica ; (24): 4175-4186, 2021.
Artículo en Chino | WPRIM | ID: wpr-888078

RESUMEN

Excitatory toxicity(ET) is an important factor of neuropathic pain(NPP) induced by central sensitization(CS), and the association of pannexin-1(Panx1)-Src-N-methyl-D-aspartate receptor subunit 2 B(NMDAR-2 B) is an important new pathway for ET to initiate CS. The present study confirmed whether the central analgesic effect of Chuanxiong Rhizoma extract(CRE) was achieved through the synchronous regulation of the brain and spinal pathways of Panx1-Src-NMDAR-2 B. In this study, dynamic and simulta-neo-us microdialysis of the brain and spinal cord in vivo combined with behavioristics, high performance liquid chromatography(HPLC)-fluorescence detection, microdialysis analysis(ISCUS~(flex)), ultrasensitive multifactorial electrochemiluminescence immunoassay, ELISA, and Western blot was employed to investigate the protein expression of NMDAR-2 B, Src, and Panx1, extracellular excitatory amino acids, cytokines, energy metabolites, and substance P in spinal dorsal horn(SDH) and anterior cingulate cortex(ACC) after CRE intervention with the rat model of spared sciatic nerve injury(SNI) as the experimental tool. Compared with the sham group, the SNI group exhibited diminished mechanical withdrawal threshold(MWT)(P<0.01), increased cold spray scores(P<0.01), glutamate(Glu), D-serine(D-Ser), and glycine(Gly) in extracellular fluids of ACC, and Glu, D-Ser, interleukin-1β(IL-1β), and lactic acid(Lac) in extracellular fluids of SDH(P<0.05), dwindled tumor necrosis factor(TNF-α)(P<0.05), and elevated protein levels of NMDAR-2 B, Src, and Panx1 in ACC(P<0.05). Compared with the SNI model rats, high-and medium-dose CRE(CRE-H/M) could potentiate the analgesic activity as revealed by the MWT test(P<0.05) and CRE-M enabled the decrease in cold spray scores(P<0.05). CRE-H/M could inhibit the levels of Glu, D-Ser and Gly in the extracellular fluids of ACC(P<0.05), and the levels of Glu in the extracellular fluids of SDH(P<0.05) in SNI rats. CRE-M significantly increased the levels of glucose(Gluc), Lac, interferon-gamma(IFN-γ), keratinocyte chemoattractant/human growth-regulated oncogenes(KC/GRO), and IL-4 in extracellular fluids of SDH in SNI rats(P<0.05). CRE-H/M/L could also inhibit the levels of NMDAR-2 B, Src and Panx1 in ACC and SDH in SNI rats(P<0.05). The central analgesic effect of CRE is presumedly related to the inhibited release of excitatory amino acid transmitters(Glu, D-Ser and Gly) in ACC and SDH of SNI rats, decreased protein expression of NMDAR-2 B, Src and Panx1 in the two regions, and the regulation of the Panx1-Src-NMDAR-2 B pathway in the spinal cord and brain. The above findings partially clarified the scientific basis of clinical analgesic effect of Chuanxiong Rhizoma.


Asunto(s)
Animales , Ratas , Sensibilización del Sistema Nervioso Central , Neuralgia/tratamiento farmacológico , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Transducción de Señal , Médula Espinal/metabolismo
7.
Chinese Critical Care Medicine ; (12): 341-345, 2019.
Artículo en Chino | WPRIM | ID: wpr-1010869

RESUMEN

OBJECTIVE@#To investigate the effects of autophagy on N-methy-D-aspartate (NMDA) receptor and its subunit NR2B and behavioral test in a rat model of neuropathic pain (NP).@*METHODS@#Male Sprague-Dawley (SD) rats were divided into sham group, NP group, autophagy inhibitor 3-methyladenine (3-MA) pretreatment group (3-MA+NP group) and autophagy inducer rapamyein (Rap) group (Rap+NP group) by random number table with 22 rats in each group. NP animal model was reproduced by ligating sciatic nerve, while sciatic nerve of the rats in the sham group were only exposed but not ligated. The rats in two pretreatment groups were intraperitoneally challenged with 3-MA 15 mg/kg or Rap 10 mg/kg injection 1 hour before operation. Mechanical paw withdrawal threshold (MWT) and thermal paw withdrawal latency (TWL) were measured before and 1, 3, 7, 14 days after operation in each group. Spinal cord tissues were harvested at 1 day and 7 days after operation for autophagosome observation by electron microscope. The expressions of autophagy protein microtubule-associated protein 1 light chain 3-II (LC3-II), Beclin1, and NMDA, NR2B were determined by Western Blot. The positive expression of LC3 was detected by immunofluorescence.@*RESULTS@#Compared with sham group, the MWT and TWL of rats in NP group were decreased gradually with the prolongation of operation time, the number of autophagosome, the expressions of LC3-II, Beclin1, NMDA, NR2B, and the positive expression of LC3 in spinal cord were significantly increased at 1 day after operation and till 7 days, which indicated that NP led to hyperpathia and autophagy activation. Compared with NP group, MWT was significantly further decreased, TWL was further shortened, the number of autophagosome was decreased, the expressions of LC3-II and Beclin1 in spinal cord were decreased, and NMDA and NR2B expressions were further increased after 3-MA pretreatment, with significant differences at 1 day after operation [MWT (g): 29.4±2.4 vs. 42.5±6.6, TWL (s): 7.2±1.0 vs. 8.8±1.1, LC3-II/β-actin: 0.38±0.03 vs. 0.52±0.07, Beclin1/β-actin: 0.29±0.06 vs. 0.59±0.05, NMDA/β-actin: 0.62±0.06 vs. 0.50±0.06, NR2B/β-actin: 0.57±0.03 vs. 0.46±0.03, all P < 0.05]. Immunofluorescence staining confirmed that the positive expression of LC3 was significantly decreased. Rap pretreatment could increase MWT, TWL and the number of autophagosome, increase LC3-II and Beclin1 expressions in spinal cord, and decrease NMDA and NR2B expressions in NP rats, and significant differences at 1 day after operation were found as compared with those in NP group [MWT (g): 49.4±4.4 vs. 42.5±6.6, TWL (s): 10.5±1.2 vs. 8.8±1.1, LC3-II/β-actin: 0.67±0.09 vs. 0.52±0.07, Beclin1/β-actin: 0.71±0.08 vs. 0.59±0.05, NMDA/β-actin: 0.40±0.05 vs. 0.50±0.06, NR2B/β-actin: 0.34±0.04 vs. 0.46±0.03, all P < 0.05], and immunofluorescence showed that the positive expression of LC3 was increased and lasted for 7 days. It indicated that Rap could increase the activity of autophagy, alleviate the occurrence of hyperalgesia, and reduce the expressions of NMDA receptor and its NR2B subunit.@*CONCLUSIONS@#NP could regulate the variety of NMDA/NR2B and hyperalgesia via increasing autophagy.


Asunto(s)
Animales , Masculino , Ratas , Autofagia/fisiología , Modelos Animales de Enfermedad , Hiperalgesia/metabolismo , Neuralgia/metabolismo , Distribución Aleatoria , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo
8.
Asian Journal of Andrology ; (6): 355-359, 2018.
Artículo en Inglés | WPRIM | ID: wpr-1009586

RESUMEN

Differences in intravaginal ejaculation latency reflect normal biological variation, but the causes are poorly understood. Here, we investigated whether variation in ejaculation latency in an experimental rat model is related to altered sympathetic nervous system (SNS) activity and expression of N-methyl-D-aspartic acid (NMDA) receptors in the paraventricular nucleus of the hypothalamus (PVN). Male rats were classified as "sluggish," "normal," and "rapid" ejaculators on the basis of ejaculation frequency during copulatory behavioral testing. The lumbar splanchnic nerve activity baselines in these groups were not significantly different at 1460 ± 480 mV, 1660 ± 600 mV, and 1680 ± 490 mV, respectively (P = 0.71). However, SNS sensitivity was remarkably different between the groups (P < 0.01), being 28.9% ± 8.1% in "sluggish," 48.4% ± 7.5% in "normal," and 88.7% ± 7.4% in "rapid" groups. Compared with "normal" ejaculators, the percentage of neurons expressing NMDA receptors in the PVN of "rapid" ejaculators was significantly higher, whereas it was significantly lower in "sluggish" ejaculators (P = 0.01). In addition, there was a positive correlation between the expression of NMDA receptors in the PVN and SNS sensitivity (r = 0.876, P = 0.02). This study shows that intravaginal ejaculatory latency is associated with SNS activity and is mediated by NMDA receptors in the PVN.


Asunto(s)
Animales , Femenino , Masculino , Ratas , Copulación , Eyaculación/fisiología , Neuronas/fisiología , Núcleo Hipotalámico Paraventricular/fisiología , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Conducta Sexual Animal/fisiología , Nervios Esplácnicos/fisiología , Sistema Nervioso Simpático/fisiología
9.
Arq. neuropsiquiatr ; 75(1): 30-35, Jan. 2017. graf
Artículo en Inglés | LILACS | ID: biblio-838854

RESUMEN

ABSTRACT Alcohol consumption aggravates injuries caused by ischemia. Many molecular mechanisms are involved in the pathophysiology of cerebral ischemia, including neurotransmitter expression, which is regulated by microRNAs. Objective: To evaluate the microRNA-219 and NMDA expression in brain tissue and blood of animals subjected to cerebral ischemia associated with alcoholism. Methods: Fifty Wistar rats were divided into groups: control, sham, ischemic, alcoholic, and ischemic plus alcoholic. The expression of microRNA-219 and NMDA were analyzed by real-time PCR. Results: When compared to the control group, the microRNA-219 in brain tissue was less expressed in the ischemic, alcoholic, and ischemic plus alcoholic groups. In the blood, this microRNA had lower expression in alcoholic and ischemic plus alcoholic groups. In the brain tissue the NMDA gene expression was greater in the ischemic, alcoholic, and ischemic plus alcoholic groups. Conclusion: A possible modulation of NMDA by microRNA-219 was observed with an inverse correlation between them.


RESUMO Algumas condições podem agravar os danos causados pelo processo isquêmico, tais como o consumo de álcool, e diversos mecanismos moleculares que estão envolvidos na fisiopatologia da isquemia cerebral, incluindo a expressão de neurotransmissores, e estes podem estar regulados por microRNAs. Objetivo: Avaliar a expressão de NMDA e do microRNA-219 no tecido cerebral e no sangue de animais submetidos à isquemia cerebral associada ao alcoolismo. Métodos: 50 ratos Wistar foram divididos em: controle, sham, isquêmico, alcoólico e isquêmico mais alcoólico. A expressão de microRNA-219 e de NMDA foram analisadas por PCR em tempo real. Resultados: Quando comparado com o grupo controle, o microRNA-219 no tecido cerebral foi menos expresso nos grupos isquêmico, alcoólico e associado. No sangue, este microRNA teve menor expressão no grupo alcoólico e no associado. Em relação à expressão do gene do NMDA, em tecido cerebral foi maior nos grupos isquêmico, alcoólico e no associado. Conclusão: Uma possível modulação de NMDA pelo microRNA-219 foi observada, com uma correlação inversa entre eles.


Asunto(s)
Animales , Masculino , Ratas , Isquemia Encefálica/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , MicroARNs/metabolismo , Alcoholismo/complicaciones , Inmunohistoquímica , Isquemia Encefálica/etiología , Ratas Wistar , Modelos Animales de Enfermedad
10.
Dental press j. orthod. (Impr.) ; 20(3): 109-117, May-Jun/2015. graf
Artículo en Inglés | LILACS | ID: lil-751407

RESUMEN

INTRODUCTION: The indirect bonding technique optimizes fixed appliance installation at the orthodontic office, ensuring precise bracket positioning, among other advantages. In this laboratory clinical phase, material and methods employed in creating the transfer tray are decisive to accuracy. OBJECTIVE: This article describes a simple, efficient and reproducible indirect bonding technique that allows the procedure to be carried out successfully. Variables influencing the orthodontic bonding are analyzed and discussed in order to aid professionals wishing to adopt the indirect bonding technique routinely in their clinical practice. .


INTRODUÇÃO: a técnica de colagem indireta prioriza a otimização do procedimento de montagem do aparelho fixo na clínica ortodôntica, assegurando, entre outras, vantagens relacionadas à precisão no posicionamento dos braquetes. Nesse procedimento clínico laboratorial, o material e o método de confecção da moldeira de transferência são determinantes no quesito precisão. OBJETIVO: este artigo descreve uma técnica de colagem indireta simples, eficiente e reprodutível, para que o procedimento possa ser realizado com sucesso. Variáveis que exercem influência sobre o procedimento são analisadas e discutidas, a fim de auxiliar o profissional a adotar, de forma rotineira, a técnica de colagem indireta em sua prática clínica. .


Asunto(s)
Humanos , Canales Iónicos/metabolismo , Técnicas de Placa-Clamp/métodos , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Activación del Canal Iónico , Canales Iónicos/química , Neuronas/metabolismo , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/metabolismo
11.
Biol. Res ; 48: 1-5, 2015. graf
Artículo en Inglés | LILACS | ID: biblio-950819

RESUMEN

BACKGROUND: In the central nervous system, interleukin-10 (IL-10) provides trophic and survival effects directly on neurons, modulates neurite plasticity, and has a pivotal importance in the neuronal regeneration in neurodegenerative and neuroinflammatory conditions. This cytokine is primarily produced by glial cells and has beneficial effects on the neuronal viability. However, the mechanisms of IL-10-elicited neuroprotection are not clear. RESULTS: Membrane preparations, isolated from wild-type (Wt) and IL-10 knockout (KO) mice brain were used in this study. It has been shown that compared to wild-type mice, in IL-10 KO mice brain, the amount of immunoglobulin binding protein (BiP) is greatly increased, whereas the content of sigma receptor-1 (SigR1) is not changed significantly. Co-immunoprecipitation experiments have shown that the association of SigR1 with small GTPase Rac1 (Ras-related C3 botulinum toxin substrate 1), NR2B subunit of NMDA-receptor (NMDAR) and inositol-3-phosphate receptor (IP3R) is higher in the IL-10 KO mice brain than in the Wt mice brain. Besides, we have found that either glutamate or sigma ligands, separately or together, do not change glutamate-induced NADPH-oxidase (NOX) activity in Wt-type mice brain membrane preparations, whereas in IL-10 KO mice high concentration of glutamate markedly increases the NOX-dependent production of reactive oxygen species (ROS). Glutamate-dependent ROS production was decreased to the normal levels by the action of sigma-agonists. CONCLUSIONS: It has been concluded that IL-10 deprivation, at least in part, can lead to the induction of ER-stress, which causes BiP expression and SigR1 redistribution between components of endoplasmic reticulum (ER) and plasma membrane. Moreover, IL-10 deficiency can change the specific organization of NMDAR, increasing the surface expression of SigR1-sensitive NR2B-containing NMDAR. In these conditions, glutamate-dependent ROS production is greatly increased leading to the initiation of apoptosis. In this circumstances, sigma-ligands could play a preventive role against NMDA receptor-mediated excitotoxicity.


Asunto(s)
Animales , Masculino , Ratones , Encéfalo/metabolismo , Interleucina-10/genética , Receptores sigma/metabolismo , Ácido Glutámico/metabolismo , NADPH Oxidasas/metabolismo , Membrana Celular/metabolismo , Receptores sigma/clasificación , Receptores sigma/agonistas , Especies Reactivas de Oxígeno/análisis , Especies Reactivas de Oxígeno/metabolismo , Receptores de N-Metil-D-Aspartato/clasificación , Receptores de N-Metil-D-Aspartato/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Inmunoprecipitación , Retículo Endoplásmico/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Técnicas de Silenciamiento del Gen , Proteínas de Choque Térmico/metabolismo , Ratones Endogámicos C57BL , Neuronas/metabolismo
12.
Braz. j. med. biol. res ; 45(10): 962-967, Oct. 2012. ilus
Artículo en Inglés | LILACS | ID: lil-647754

RESUMEN

Our objective was to investigate the protein level of phosphorylated N-methyl-D-aspartate (NMDA) receptor-1 at serine 897 (pNR1 S897) in both NMDA-induced brain damage and hypoxic-ischemic brain damage (HIBD), and to obtain further evidence that HIBD in the cortex is related to NMDA toxicity due to a change of the pNR1 S897 protein level. At postnatal day 7, male and female Sprague Dawley rats (13.12 ± 0.34 g) were randomly divided into normal control, phosphate-buffered saline (PBS) cerebral microinjection, HIBD, and NMDA cerebral microinjection groups. Immunofluorescence and Western blot (N = 10 rats per group) were used to examine the protein level of pNR1 S897. Immunofluorescence showed that control and PBS groups exhibited significant neuronal cytoplasmic staining for pNR1 S897 in the cortex. Both HIBD and NMDA-induced brain damage markedly decreased pNR1 S897 staining in the ipsilateral cortex, but not in the contralateral cortex. Western blot analysis showed that at 2 and 24 h after HIBD, the protein level of pNR1 S897 was not affected in the contralateral cortex (P > 0.05), whereas it was reduced in the ipsilateral cortex (P < 0.05). At 2 h after NMDA injection, the protein level of pNR1 S897 in the contralateral cortex was also not affected (P > 0.05). The levels in the ipsilateral cortex were decreased, but the change was not significant (P > 0.05). The similar reduction in the protein level of pNR1 S897 following both HIBD and NMDA-induced brain damage suggests that HIBD is to some extent related to NMDA toxicity possibly through NR1 phosphorylation of serine 897.


Asunto(s)
Animales , Femenino , Masculino , Ratas , Corteza Cerebral/metabolismo , Hipoxia-Isquemia Encefálica/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animales Recién Nacidos , Western Blotting , Corteza Cerebral/fisiopatología , Técnica del Anticuerpo Fluorescente , Hipoxia-Isquemia Encefálica/etiología , Hipoxia-Isquemia Encefálica/fisiopatología , N-Metilaspartato , Fosforilación , Ratas Sprague-Dawley
13.
Int. j. morphol ; 30(3): 979-985, Sept. 2012. ilus
Artículo en Inglés | LILACS | ID: lil-665512

RESUMEN

NMDAR (N-methyl-D-aspartate receptor) is one subtype of ionotrophic glutamate receptor which is extensively distributed in the central nervous system (CNS). In the mammalian CNS, NMDAR serves prominent roles in the pathophysiologic process of cerebral ischemia. This study aimed to investigate the pattern of expression of protein and gene of the excitatory neurotransmitter NMDAR in experimental focal cerebral ischemia and the hole of neuroprotection with hypothermia and ketoprofen. 120 rats were randomly divided into 6 groups (20 animals each): control - no surgery; sham - simulation of surgery; ischemic - focal ischemia for 1 hour, without reperfusion; ischemic + intraischemic hypothermia; ischemic + previous intravenous ketoprofen, and ischemic + hypothermia and ketoprofen. Ten animals from each experimental group were used to establish the volume of infarct. Transient focal cerebral ischemia was obtained in rats by occlusion of the middle cerebral artery with an intraluminal suture. The infarct volume was measured using morphometric analysis of infarct areas defined by triphenyl tetrazolium chloride and the patterns of expression of the protein and gene NMDA were evaluated by immunohistochemistry and quantitative real-time PCR, respectively. Increases in the protein and gene NMDA receptor in the ischemics areas were observed and these increases were reduced by hypothermia and ketoprofen. The increase in the NMDA receptor protein and gene expression observed in the ischemic animals was reduced by neuroprotection (hypothermia and ketoprofen). The NMDA receptor increases in the ischemic area suggests that the NMDA mediated neuroexcitotoxicity plays an important role in cell death and that the neuroprotective effect of both, hypothermia and ketoprofen is directly involved with the NMDA...


NMDAR (N-metil-D-aspartato) es un tipo de receptor de glutamato ionotrópico y está ampliamente distribuido en el sistema nervioso central (SNC). En el SNC de mamíferos, NMDAR se destaca de manera importante en el proceso fisiopatológico de la isquemia cerebral. Este estudio tuvo como objetivo investigar el patrón de expresión de proteínas y genes para el NMDA neurotransmisor excitatorio experimental de la isquemia cerebral focal y el vacío en la neuroprotección con hipotermia y ketoprofeno. Se dividieron 120 ratas aleatoriamente en grupos de 6 animales cada uno (20): Control - sin cirugía; Sham - simulación de cirugía; isquémicas - isquemia focal durante 1 hora, sin reperfusión isquémica; hipotermia intra-isquémica; isquemia; previa aplicación de ketoprofeno intravenoso, e hipotermia isquémica y ketoprofeno. Diez animales de cada grupo experimental fueron utilizados para establecer el volumen de infarto.La isquemia cerebral focal transitoria fue obtenida en ratas mediante oclusión de la arteria cerebral media con una sutura intraluminal. El volumen de infarto fue medido mediante análisis morfométrico de las áreas de infarto definidas por cloruro de trifenil tetrazolio y patrones de expresión de la proteína y el gen de NMDA, fueron evaluados por inmunohistoquímica y PCR cuantitativa en tiempo real, respectivamente. Se observaron aumentos en la proteína y en el gen del receptor de NMDA en las áreas isquémicas y estos aumentos fueron reducidos por la hipotermia y ketoprofeno. El aumento de la proteína del receptor de NMDA y la expresión génica observada en los animales isquémicos fue reducido mediante hipotermia y ketoprofeno. Los aumentos del receptor de NMDA en el área isquémica sugiere que la neuro excitotoxicidad mediada por NMDA desempeña un papel importante en la muerte celular y que el efecto neuroprotector de ambos, hipotermia y ketoprofeno está directamente relacionado al NMDA...


Asunto(s)
Animales , Ratas , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Receptores de N-Metil-D-Aspartato/metabolismo , Cetoprofeno/metabolismo , Fármacos Neuroprotectores/metabolismo , Expresión Génica , Hipotermia , Inmunohistoquímica , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de N-Metil-D-Aspartato/genética
14.
Clinics ; 66(supl.1): 71-77, 2011. ilus
Artículo en Inglés | LILACS | ID: lil-593151

RESUMEN

Beside its role in motor coordination, the cerebellum is involved in cognitive function such as attention, working memory, verbal learning, and sensory discrimination. In schizophrenia, a disturbed prefronto-thalamo-cerebellar circuit has been proposed to play a role in the pathophysiology. In addition, a deficit in the glutamatergic N-methyl-D-aspartate (NMDAf) receptor has been hypothesized. The risk gene neuregulin 1 may play a major role in this process. We demonstrated a higher expression of the NMDA receptor subunit 2D in the right cerebellar regions of schizophrenia patients, which may be a secondary upregulation due to a dysfunctional receptor. In contrast, the neuregulin 1 risk variant containing at least one C-allele was associated with decreased expression of NMDA receptor subunit 2C, leading to a dysfunction of the NMDA receptor, which in turn may lead to a dysfunction of the gamma amino butyric acid (GABA) system. Accordingly, from post-mortem studies, there is accumulating evidence that GABAergic signaling is decreased in the cerebellum of schizophrenia patients. As patients in these studies are treated with antipsychotics long term, we evaluated the effect of long-term haloperidol and clozapine treatment in an animal model. We showed that clozapine may be superior to haloperidol in restoring a deficit in NMDA receptor subunit 2C expression in the cerebellum. We discuss the molecular findings in the light of the role of the cerebellum in attention and cognitive deficits in schizophrenia.


Asunto(s)
Animales , Humanos , Cerebelo/fisiopatología , Trastornos del Conocimiento/fisiopatología , Esquizofrenia/fisiopatología , Antipsicóticos/uso terapéutico , Cerebelo/metabolismo , Ácido Glutámico/metabolismo , Haloperidol/uso terapéutico , Receptores de N-Metil-D-Aspartato/metabolismo , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/genética
15.
Indian J Biochem Biophys ; 2009 Dec; 46(6): 441-446
Artículo en Inglés | IMSEAR | ID: sea-135227

RESUMEN

Mitochondrial mechanism of oxidative stress and matrix metalloproteinase (MMP) activation was unclear. Our recent data suggested that MMPs are localized to mitochondria and activated by peroxynitrite, which causes cardiovascular remodeling and failure. Recently, we have demonstrated that elevated levels of homocysteine (Hcy), known as hyperhomocysteinemia (HHcy) increase oxidative stress in the mitochondria. Although HHcy causes heart failure, interestingly, it is becoming very clear that Hcy can generate hydrogen sulfide (H2S), if the enzymes cystathionine β-synthase (CBS) and cystathionine -lyase (CGL) are present. H2S is a strong anti-oxidant and vasorelaxing agent. Paradoxically, it is interesting that Hcy, a precursor of H2S can be cardioprotective. The CGL is ubiquitous, while the CBS is not present in the vascular tissues. Therefore, under normal condition, only half of Hcy can be converted to H2S. However, there is strong potential for gene therapy of CBS to vascular tissue that can mitigate the detrimental effects of Hcy by converting it to H2S. This scenario is possible, if the activities of both the enzymes (CBS and CGL) are increased in tissues by gene therapy.


Asunto(s)
Animales , Eliminación de Gen , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Homocisteína/metabolismo , Humanos , Sulfuro de Hidrógeno/metabolismo , Contracción Miocárdica , Receptores de N-Metil-D-Aspartato/deficiencia , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
16.
Biol. Res ; 41(4): 413-424, Dec. 2008. ilus
Artículo en Inglés | LILACS | ID: lil-518397

RESUMEN

Visual callosal fibers link cortical loci in opposite hemispheres that represent the same visual field but whose locations are not mirror-symmetric with respect to the brain midline. Presence of the eyes from postnatal day 4 (P4) to P6 is required for this map to be specified. We tested the hypothesis that specification of the callosal map requires the activation of A'-methyl-D-aspartate receptors (NMDARs). Our results show that blockade of NMDARs with MK-801 during this critical period did not induce obvious abnormalities in callosal connectivity patterns, suggesting that retinal influences do not operate through NMDAR-mediated processes to specify normal callosal topography. In contrast, we found that interfering with NMDAR function either through MK801-induced blockade of NMDARs starting at P6 or neonatal enucleation significantly increases the length of axon branches and total length of arbors, without major effects on the number of branch tips. Our results further suggest that NMDARs act by altering the initial elaboration of arbors rather than by inhibiting a later-occurring remodeling process. Since the callosal map is present by P6, just as axonal branches of simple architecture grow into gray matter, we suggest that regulation of arbor development by NMDAR-mediated processes is important for maintaining the precision of this map.


Asunto(s)
Animales , Ratas , Axones/fisiología , Cuerpo Calloso/crecimiento & desarrollo , Maleato de Dizocilpina/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Vías Visuales/crecimiento & desarrollo , Animales Recién Nacidos , Axones/efectos de los fármacos , Mapeo Encefálico , Cuerpo Calloso/citología , Cuerpo Calloso/efectos de los fármacos , Enucleación del Ojo , Ratas Long-Evans , Receptores de N-Metil-D-Aspartato/metabolismo , Vías Visuales/citología , Vías Visuales/efectos de los fármacos
17.
Experimental & Molecular Medicine ; : 58-64, 2005.
Artículo en Inglés | WPRIM | ID: wpr-18130

RESUMEN

An environmental pollutant, tetrachloro dibenzo dioxin (TCDD) is known to illicit the cognitive disability and motor dysfunction in the developing brain. TCDD induced effects leading to neurodevelopmental and neurobehavioral deficit may have been defined, however underlying molecular mechanism and possible intracellular targets remain to be elucidated. In this study, we attempted to analyze TCDD-induced neurotoxic effects in the granule cells from cerebellum where certain cognitive abilities and motor function command are known to be excuted. [3H]PDBu, (phorbol 12,13-dibutyrate) binding assay indicated that TCDD induced a dose-dependent increase of total PKC activity and its induction was the aryl hydrocarbon receptor (AhR) dependent and N-methyl-D-aspartate receptor (NMDAR) independent. TCDD also caused the translocation of both PKC-alpha and -epsilon in a dose-dependent manner but associated with different receptors; PKC-alpha via AhR but not PKC-epsilon indicating an isozyme-specific pattern of the induction. Increase of the ROS formation was also observed in the cells treated with TCDD in a dose-dependent and an AhR-dependent manner. The treatment of the cells with the diamino dicyano-bis(2-aminophenylthio) butadiene (U0126, MEK-1/2 inhibitor), dizocilpine maleate (MK-801, non-competitive N-methyl-D-aspartate glutamate receptor antagonist) and vitamin E attenuated the TCDD-induced ROS production indicating that TCDD-induced ROS formation may be associated with activation of ERK-1/2 in the MAP kinase pathway or the NMDA receptor. TCDD also increased [Ca2+]i, which is associated with ROS formation and PKC activation in the cerebellar granule cells. It is suggested that TCDD activates the NMDA receptor, which may induce a sustained increase of [Ca2+]i in neurons followed by the ROS formation. Our findings may contribute to understanding the mechanism of TCDD-related neurotoxicity, thereby improving the health risk assessment of neurotoxic compounds in humans.


Asunto(s)
Animales , Ratas , Unión Competitiva , Butadienos/farmacología , Carcinógenos/farmacología , Cerebelo/citología , Maleato de Dizocilpina/farmacología , Contaminantes Ambientales/toxicidad , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Fármacos Neuroprotectores/farmacología , Nitrilos/farmacología , Forbol 12,13-Dibutirato/farmacología , Proteína Quinasa C/metabolismo , Transporte de Proteínas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Dibenzodioxinas Policloradas/toxicidad
18.
Artículo en Inglés | IMSEAR | ID: sea-19165

RESUMEN

BACKGROUND & OBJECTIVES: Epileptic seizures have been reported in patients on imipenem/cilastatin (Imi/Cil) therapy. To investigate contribution of N-methyl-D-aspartate (NMDA) receptors in inducing imipenem/cilastatin (Imi/Cil) seizures, the effects of competitive NMDA antagonist, APV [(+/-)-2-amino-5-phosphonovaleric acid], non-competitive NMDA antagonist remacemide [(+/-)-2-amino-N-(1-methyl-1,2-diphenylethyl)-acetamidel, and glycine receptor partial agonist HA-966 [(+/-)-(3-amino-1-hydroxypyrrolid-2-one)] on electroencephalographic (EEG) activity and behaviour were studied in rats. METHODS: Adult male Wistar albino rats were implanted with electrodes and cannulae were placed into the right lateral ventricle. Animals were divided into five groups: (i) saline (icv)+Imi/Cil (ii) APV (0.2 micromol)+Imi/Cil, (iii) APV (0.4 micromol)+Imi/Cil, (iv) remacemide (100 mg/kg, ip)+Imi/Cil, and (v) HA-966 (200 microg, icv)+Imi/Cil. The drugs were administered 30 min before icv injection of Imi/Cil (100/100 microg), and their effects on incidence of seizures, latencies to EEG changes and convulsions, severity, lethality and time to lethal outcome were studied. RESULTS: Imi/Cil provoked complete seizure response in all rats and all animals died within 10-18 min after the injection. EEG epileptiform activity preceded behavioral seizures. Clonic-tonic seizures were characterized by continuous bursts of high frequency high amplitude spikes in the EEG. The dose of 0.2 micromol of APV prolonged only the latency to the first EEG changes, while 0.4 micromol dose significantly influenced all seizure parameters. HA-966 increased only the latency to Imi/Cil-induced convulsions, while remacemide had no significant effect on seizure parameters. INTERPRETATION & CONCLUSION: The results suggested that excitatory neurotransmission contributed to the generation and/or propagation of Imi/Cil-induced seizures in rats, and that the effects of NMDA antagonists depended on a particular binding site within the NMDA receptor complex, and affinity to that site.


Asunto(s)
Acetamidas/farmacología , Animales , Sitios de Unión , Cilastatina/toxicidad , Electroencefalografía/efectos de los fármacos , Imipenem/toxicidad , Masculino , Pirrolidinonas/farmacología , Ratas , Ratas Wistar , Receptores de N-Metil-D-Aspartato/metabolismo , Convulsiones/inducido químicamente , Valina/análogos & derivados
19.
Experimental & Molecular Medicine ; : 98-102, 2004.
Artículo en Inglés | WPRIM | ID: wpr-190967

RESUMEN

Glutamate induced rapid phosphorylation of moesin, one of ERM family proteins involved in the ligation of membrane to actin cytoskeleton, in rat hippocampal cells (JBC, 277:16576-16584, 2002). However, the identity of glutamate receptor has not been explored. Here we show that a-amino- 3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor is responsible for glutamate-induced RhoA activation and phosphorylation of moesin. Glutamate induced phosphorylation at Thr-558 of moesin was still detectible upon chelation of Ca(2+), suggesting involvement of AMPA receptor instead of N-methyl D-Aspartate (NMDA) receptor in this phosphorylation of moesin. AMPA but not NMDA- induced moesin phosphorylation was independent of Ca(2+). Both AMPA and NMDA but not Kainate induced moesin phosphorylation at similar levels. However, the kinetics of phosphorylation varied greatly between AMPA and NMDA where AMPA treatment rapidly increased phosphomoesin, which reached a maximum at 10 min after treatment and returned to a basal level at 30 min. In contrast, NMDA-induced phosphorylation of moesin reached a maximum at 30 min after treatment and was remained at higher levels at 60 min. A possible involvement of RhoA and its downstream effector, Rho kinase in the AMPA receptor-triggered phosphorylation of moesin was also explored. The kinetics for the glutamate- induced membrane translocation of RhoA was similar to that of moesin phosphorylation induced by AMPA. Moreover, Y-27632, a specific Rho kinase inhibitor, completely blocked AMPA-induced moesin phosphorylation but had no effect on NMDA-induced moesin phosphorylation. These results suggest that glutamate-induced phosphorylation of moesin may be mediated through the AMPA receptor/RhoA/Rho kinase pathway.


Asunto(s)
Animales , Ratas , Calcio/metabolismo , Línea Celular , Agonistas de Aminoácidos Excitadores/metabolismo , Ácido Glutámico/metabolismo , Ácido Kaínico/metabolismo , Proteínas de Microfilamentos/metabolismo , N-Metilaspartato/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
20.
Medicina (B.Aires) ; 55(4): 355-65, 1995. graf, tab
Artículo en Español | LILACS | ID: lil-161640

RESUMEN

Excitatory amino acids (EAA) became known as neurotransmitters of the central nervous system (CNS) in the last decade. The most studied EAA are glutamate and aspartate. Both are synthesized by the same mechanism as gama-aminobutyric acid. (Fig. 1). Glutamate is widely distributed in the CNS and the spinal cord, being the areas of higher concentration the cerebral cortex, the hypocampus and the cerebellum. There have been identified two type of receptors for glutamate: ionotropic and metabotropic. The former includes three different types: NMDA, AMPA and KA. NMDA receptor is coupled to a Na+, and Ca2+, channel being the second ion the most important one. This receptor has several sites of binding for various substances. Along with the site for N-methyl-D-aspartate, which binds glutamate and/or aspartate, there have been identified a site for the binding of glycine (which is different from the strychnine sensitive one), a site for poliamines such as spermine and spermidine, and a site for the binding of Zn2+ (Table 1). AMPA receptor is associated to a Ca2+ -Na+, channel, being in this case the Na+ the most important ion. There are two metabotropic type receptors: L-AP4 and trans-ACPD. Both are coupled to a G protein and agonists exert their action increasing phospholipase C activity which in turn induces an increment of IP3 and diacyl-glicerol, and a consecutive releasing of Ca2+, from intracellular stores. EAA play a role in some physiological processes. One of them is long-term potentiation (LTP), an electrochemical phenomenon involved in memory consolidation. Antagonists of NMDA and AMPA receptor prevent the development of LTP, and conversely, the agonist of glycine site of NMDA receptor --D-cycloserine -- facilitates memory consolidation. Since 1957, EAA are considered neurotoxic substances and there are many indirect evidences to support this statement. Pathogenesis of neuronal damage elicited by EAA involves the events shown in Fig. 3. Prevention of the cascade of events that provokes neurotoxicity may be achieved by NMDA antagonists, but once it has begun it may be only aborted substracting the Ca2+ from the medium, using nifedipine or blocking AMPA receptor with an antagonist (CNQX). EAA have been shown to play a toxic role in neuronal damage induced by ischemia. Research using various experimental models demonstrated that NMDA receptor antagonists (i.e. MK 801) blocks postischemic damage. Interventions at various levels of the pathogenic cascade shown in Fig. 4 provoke the same results. There is enough evidence to suspect that NMDA and AMPA receptors are altered in epilepsy. NMDA antagonists (i.e. MK801 or AP5) prevent the development of epileptic seizures induced by kindling; CNQX, an AMPA antagonist, blocks the increase in electrical activity induced by K+, in slices of hypocampus; felbamate, an antiepileptic drug, blocks the glycine site (not strychnine sensitive) decreasing NMDA receptor activity. Several neurodegenerative disorders have been associated with exogenous administration or accidental intake of EAA. (i.e. neurolatirism, Guam disease). Similarities between these diseases and lateral amiotrophic sclerosis indicate that in the latter EAA may play a pathogenic role. Finally, the psychotomimetic effect of phencyclidine (an antagonist of NMDA receptor) suggests that in schizophrenia, together with dopaminergic neurotransmission impairment, some dysfunction of glutamate pathways may be present.


Asunto(s)
Animales , Ratas , Aminoácidos Excitadores/fisiología , Técnicas In Vitro , Ácido Glutámico/metabolismo , Aminoácidos Excitadores/toxicidad , Epilepsia/etiología , Ácido gamma-Aminobutírico/biosíntesis , Isquemia/etiología , Neuroglía/fisiología , Receptores de Glutamato/fisiología , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Esquizofrenia/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA