Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Añadir filtros








Intervalo de año
1.
Chinese Journal of Biotechnology ; (12): 4428-4444, 2023.
Artículo en Chino | WPRIM | ID: wpr-1008034

RESUMEN

Methylation plays a vital role in biological systems. SAM (S-adenosyl-L-methionine), an abundant cofactor in life, acts as a methyl donor in most biological methylation reactions. SAM-dependent methyltransferases (MTase) transfer a methyl group from SAM to substrates, thereby altering their physicochemical properties or biological activities. In recent years, many SAM analogues with alternative methyl substituents have been synthesized and applied to methyltransferases that specifically transfer different groups to the substrates. These include functional groups for labeling experiments and novel alkyl modifications. This review summarizes the recent progress in the synthesis and application of SAM methyl analogues and prospects for future research directions in this field.


Asunto(s)
S-Adenosilmetionina/metabolismo , Metionina , Metiltransferasas/metabolismo , Metilación , Racemetionina
2.
Chinese Journal of Biotechnology ; (12): 2248-2264, 2023.
Artículo en Chino | WPRIM | ID: wpr-981201

RESUMEN

S-adenosyl-l-methionine (SAM) is ubiquitous in living organisms and plays important roles in transmethylation, transsulfuration and transamination in organisms. Due to its important physiological functions, production of SAM has attracted increasing attentions. Currently, researches on SAM production mainly focus on microbial fermentation, which is more cost-effective than that of the chemical synthesis and the enzyme catalysis, thus easier to achieve commercial production. With the rapid growth in SAM demand, interests in improving SAM production by developing SAM hyper-producing microorganisms aroused. The main strategies for improving SAM productivity of microorganisms include conventional breeding and metabolic engineering. This review summarizes the recent research progress in improving microbial SAM productivity to facilitate further improving SAM productivity. The bottlenecks in SAM biosynthesis and the solutions were also addressed.


Asunto(s)
S-Adenosilmetionina/metabolismo , Fitomejoramiento , Fermentación , Ingeniería Metabólica
3.
Biomédica (Bogotá) ; 34(supl.1): 41-49, abr. 2014. ilus, tab
Artículo en Inglés | LILACS | ID: lil-712420

RESUMEN

Introduction: Aminoglycosides like streptomycin are well-known for binding at specific regions of ribosome RNA and then acting as translation inhibitors. Nowadays, several pathogens have been detected to acquire an undefined strategy involving mutation at non structural ribosome genes like those acting as RNA methylases. rsmG is one of those genes which encodes an AdoMet-dependent methyltransferase responsible for the synthesis of m 7 G527 in the 530 loop of bacterial 16S rRNA. This loop is universally conserved, plays a key role in ribosomal accuracy, and is a target for streptomycin binding. Loss of the m 7 G527 modification confers low-level streptomycin resistance and may affect ribosomal functioning. Objectives: After taking into account genetic information indicating that some clinical isolates of human pathogens show streptomycin resistance associated with mutations at rsmG , we decided to explore new hot spots for mutation capable of impairing the RsmG in vivo function and of promoting low-level streptomycin resistance. Materials and methods: To gain insights into the molecular and genetic mechanism of acquiring this aminoglycoside resistance phenotype and the emergence of high-level streptomycin resistance in rsmG mutants, we mutated Escherichia coli rsmG and also performed a genotyping study on rpsL from several isolates showing the ability to grow at higher streptomycin concentrations than parental strains. Results: We found that the mutations at rpsL were preferentially present in these mutants, and we observed a clear synergy between rsmG and rpsL genes to induce streptomycin resistance. Conclusion: We contribute to understand a common mechanism that is probably transferable to other ribosome RNA methylase genes responsible for modifications at central sites for ribosome function.


Introducción. Los aminoglucósidos son moléculas antibióticas capaces de inhibir la síntesis de proteínas bacterianas tras su unión al ribosoma procariota. La resistencia a aminoglucósidos está clásicamente asociada a mutaciones en genes estructurales del ribosoma bacteriano; sin embargo, varios estudios recientes han demostrado, de forma recurrente, la presencia de un nuevo mecanismo dependiente de mutación que no involucra genes estructurales. El gen rsmG es uno de ellos y se caracteriza por codificar una metiltransferasa que sintetiza el nucleósido m 7 G527 localizado en el loop 530 del ribosoma bacteriano, este último caracterizado como sitio preferencial al cual se une la estreptomicina. Objetivo. Partiendo de las recientes asociaciones clínicas entre las mutaciones en el gen rsmG y la resistencia a estreptomicina, este estudio se propuso la caracterización de nuevos puntos calientes de mutación en este gen que puedan causar resistencia a estreptomicina usando Escherichia coli como modelo de estudio. Materiales y métodos. Se indagó sobre el mecanismo genético y molecular por el cual se adquiere la resistencia a estreptomicina y su transición a la resistencia a altas dosis mediante mutagénesis dirigida del gen rsmG y genotipificación del gen rpsL . Resultados. Se encontró que la mutación N39A en rsmG inactiva la proteína y se reportó un nuevo conjunto de mutaciones en rpsL que confieren resistencia a altas dosis de estreptomicina. Conclusiones. Aunque los mecanismos genéticos subyacentes permanecen sin esclarecer, se concluyó que dichos patrones secuenciales de mutación podrían tener lugar en otros genes modificadores del ARN bacteriano debido a la conservación evolutiva y al papel crítico que juegan tales modificaciones en la síntesis de proteínas.


Asunto(s)
Aminoglicósidos/farmacología , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Proteínas de Escherichia coli/genética , Mutación Missense , Metiltransferasas/genética , Mutación Puntual , Procesamiento Postranscripcional del ARN/genética , ARN Bacteriano/metabolismo , /metabolismo , Estreptomicina/farmacología , Secuencia de Aminoácidos , Sitios de Unión/genética , Dominio Catalítico/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , Metilación , Modelos Moleculares , Datos de Secuencia Molecular , Metiltransferasas/química , Metiltransferasas/metabolismo , Filogenia , Conformación Proteica , ARN Bacteriano/genética , /genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , S-Adenosilmetionina/metabolismo , Alineación de Secuencia , Análisis de Secuencia de ADN , Eliminación de Secuencia , Homología de Secuencia de Aminoácido
4.
Indian J Biochem Biophys ; 1992 Oct; 29(5): 415-7
Artículo en Inglés | IMSEAR | ID: sea-28953

RESUMEN

Nitrous oxide (N2O) decreased in vivo oxidation of histidine in rats fed a basal diet marginally deficient in methionine, although hepatic levels of S-adenosylmethionine (AdoMet) were not significantly altered. Excess dietary methionine increased hepatic levels of AdoMet and increased histidine oxidation. However, it did not protect histidine oxidation when the rats were treated with N2O. Parenteral administration of methionine greatly increased hepatic levels of AdoMet and increased histidine oxidation in normal and N2O treated rats. This indicates that when hepatic levels of AdoMet are greatly elevated by administration of methionine, N2O does not affect in vivo histidine oxidation.


Asunto(s)
Animales , Histidina/metabolismo , Cinética , Hígado/efectos de los fármacos , Masculino , Metionina/metabolismo , Óxido Nitroso/farmacología , Ratas , Ratas Sprague-Dawley , S-Adenosilmetionina/metabolismo
5.
Indian J Biochem Biophys ; 1991 Apr; 28(2): 96-9
Artículo en Inglés | IMSEAR | ID: sea-27805

RESUMEN

The possibility of methylation, acetylation and phosphorylation of the bases of DNA has been studied in vitro by incubating nuclei of the liver and cerebral hemisphere of young (18 wk) and old (120 wk) rats with radioactive donors, [3H]S approximately adenosyl methylmethionine, [3H]-acetyl approximately CoA and [32P]-gamma-ATP for methylation, acetylation and phosphorylation of the bases, respectively. Nuclei were also incubated with S approximately adenosyl homocysteine to inhibit methylation with sodium butyrate to stimulate acetylation and with alkaline phosphatase to remove phosphate groups incorporated into the bases. DNA was then extensively purified and incorporation of each type of label was estimated. The data show that both methylation and acetylation of DNA of old rats were significantly higher than those of young rats, and phosphorylation is lower in old rats. Such modifications may prevent base pairing between the two strands of DNA, alter its conformation and binding of trans-acting factors at specific sites, and thereby alter gene expression.


Asunto(s)
Acetilcoenzima A/metabolismo , Acetilación , Adenosina Trifosfato/metabolismo , Envejecimiento , Animales , Encéfalo/crecimiento & desarrollo , Núcleo Celular/metabolismo , ADN/metabolismo , Femenino , Hígado/crecimiento & desarrollo , Metilación , Fosforilación , Ratas , Ratas Endogámicas , S-Adenosilmetionina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA