Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
Braz. j. microbiol ; 43(3): 1183-1191, July-Sept. 2012. graf
Artículo en Inglés | LILACS | ID: lil-656689

RESUMEN

To compensate for stress imposed by salinity, biofilm formation and exopolysaccharide production are significant strategies of salt tolerant bacteria to assist metabolism. We hypothesized that two previously isolated salt-tolerant strains Halomonas variabilis (HT1) and Planococcus rifietoensis (RT4) have an ability to improve plant growth, These strains can form biofilm and accumulate exopolysacharides at increasing salt stress. These results showed that bacteria might be involved in developing microbial communities under salt stress and helpful in colonizing of bacterial strains to plant roots and soil particles. Eventually, it can add to the plant growth and soil structure. We investigated the comparative effect of exopolysacharide and biofilm formation in two bacterial strains Halomonas variabilis (HT1) and Planococcus rifietoensis (RT4) in response to varying salt stress. We found that biofilm formation and exopolysaccharide accumulation increased at higher salinity. To check the effect of bacterial inoculation on the plant (Cicer arietinum Var. CM-98) growth and soil aggregation, pot experiment was conducted by growing seedlings under salt stress. Inoculation of both strains increased plant growth at elevated salt stress. Weight of soil aggregates attached with roots and present in soil were added at higher salt concentrations compared to untreated controls. Soil aggregation was higher at plant roots under salinity. These results suggest the feasibility of using above strains in improving plant growth and soil fertility under salinity.


Asunto(s)
Biopelículas , Halomonas/metabolismo , Plancton/metabolismo , Polisacáridos Bacterianos/metabolismo , Suelos Salitrosos/análisis , Trastornos de Estrés por Calor/metabolismo , Métodos , Plantas , Microbiología del Suelo
2.
J Genet ; 2003 Dec; 82(3): 89-94
Artículo en Inglés | IMSEAR | ID: sea-114467

RESUMEN

In a number of animal species it has been shown that exposure to low levels of stress at a young age has a positive effect on stress resistance later in life, and on longevity. The positive effects have been attributed to the activation of defence/cleaning systems (heat shock proteins (Hsps), antioxidases, DNA repair) or to effects of a changed metabolic rate, or both. We investigated the effect of mild stress exposures early in life on Hsp70 synthesis after a harder stress exposure later in life in five isofemale lines of Drosophila melanogaster. Female flies were either exposed to repeated bouts of mild heat stress (3 h at 34 degrees C) at a young age (days 2, 4 and 6 post-eclosion) or held under standard laboratory conditions. At 16 and 32 days of adult age, respectively, flies were exposed to a high-temperature treatment known to induce Hsp70 in the investigated species (1 h at 37 degrees C). Thereafter, the inducible Hsp70 levels were measured. Our data show a tendency towards increased Hsp70 synthesis with increased age for both 'mild stress' and 'no stress' flies. Moreover, the results show that flies exposed to mild stress at a young age synthesized more Hsp70 upon induction, compared to control flies, and that this difference was accentuated at 32 days compared to 16 days of age. Thus, bouts of mild heat stress at a young age impact on the physiological stress response system later in life. This may be caused by an increased ability to react to future stresses. Alternatively, the mild stress exposure at a young age may actually have caused cellular damages increasing the need for Hsp70 levels after stress exposure later in life. The importance of an Hsp70 upregulation (throughout life) in explaining the phenomenon of hormesis is discussed, together with alternative hypotheses, and suggestions for further studies.


Asunto(s)
Animales , Drosophila melanogaster/metabolismo , Femenino , Proteínas HSP70 de Choque Térmico/biosíntesis , Trastornos de Estrés por Calor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA