Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtre
Ajouter des filtres








Gamme d'année
1.
An. acad. bras. ciênc ; 90(1,supl.1): 943-992, 2018. tab, graf
Article Dans Anglais | LILACS | ID: biblio-886937

Résumé

ABSTRACT Several enzymatic reactions of heteroatom-containing compounds have been explored as unnatural substrates. Considerable advances related to the search for efficient enzymatic systems able to support a broader substrate scope with high catalytic performance are described in the literature. These reports include mainly native and mutated enzymes and whole cells biocatalysis. Herein, we describe the historical background along with the progress of biocatalyzed reactions involving the heteroatom(S, Se, B, P and Si) from hetero-organic substrates.


Sujets)
Bactéries/métabolisme , Biotransformation , Enzymes/métabolisme , Biocatalyse , Champignons/métabolisme , Spécificité du substrat , Techniques de biocapteur , Enzymes/composition chimique
2.
An. acad. bras. ciênc ; 90(1,supl.1): 593-606, 2018. graf
Article Dans Anglais | LILACS | ID: biblio-886930

Résumé

ABSTRACT The conversion of carbon dioxide into important industrial feedstock is a subject of growing interest in modern society. A possible way to achieve this goal is by carrying out the CO2/methanol cascade reaction, allowing the recycle of CO2 using either chemical catalysts or enzymes. Efficient and selective reactions can be performed by enzymes; however, due to their low stability, immobilization protocols are required to improve their performance. The cascade reaction to reduce carbon dioxide into methanol has been explored by the authors, using, sequentially, alcohol dehydrogenase (ADH), formaldehyde dehydrogenase (FalDH), and formate dehydrogenase (FDH), powered by NAD+/NADH and glutamate dehydrogenase (GDH) as the co-enzyme regenerating system. All the enzymes have been immobilized on functionalized magnetite nanoparticles, and their reactions investigated separately in order to establish the best performance conditions. Although the stepwise scheme led to only 2.3% yield of methanol per NADH; in a batch system under CO2 pressure, the combination of the four immobilized enzymes increased the methanol yield by 64 fold. The studies indicated a successful regeneration of NADH in situ, envisaging a real possibility of using immobilized enzymes to perform the cascade CO2-methanol reaction.

SÉLECTION CITATIONS
Détails de la recherche