RÉSUMÉ
STUDY DESIGN: Retrospective study. PURPOSE: To evaluate risk factors related to the development of new fractures in adjacent vertebrae after percutaneous vertebroplasty. OVERVIEW OF LITERATURE: Recent reports indicate that undue numbers of new fractures in adjacent vertebral bodies occur after percutaneous vertebroplasty. METHODS: One hundred four of 369 patients who underwent percutaneous vertebroplasty were followed for over 1 year. Fifty-four patients (51.9%) subsequently suffered from adjacent vertebral fractures. Age, lumbar lordotic angle, sacral slope, pelvic tilt, pelvic incidence, bone mineral density, amounts of cement injected, the restoration of vertebral height, kyphotic angle differences preexisting fracture, and intradiscal cement leakage were noted. RESULTS: Average bone mineral density was -3.52 in the fracture group and -2.91 in the fracture-free group; the risk of adjacent vertebral fracture increased as bone mineral density decreased (p < 0.05). Intradiscal cement leakage occurred in 18 patients (33.3%) in the fracture group, indicating that the risk of adjacent vertebral fracture increased with intradiscal cement leakage. In addition, 36 patients (66.7%) in the fracture group had a pre-existing fracture; thus, the presence of a preexisting fracture was found to be significantly associated with an increased risk of an adjacent vertebral fracture (p < 0.05). Higher restoration rates are associated with a greater likelihood of developing adjacent vertebral fractures (p < 0.05). CONCLUSIONS: The factors found to contribute significantly to new fractures in adjacent vertebral bodies after percutaneous vertebroplasty were a lower bone mineral density, a greater restoration rate of vertebral height, a pre-existing fracture, and intradiscal cement leakage.