Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 1 de 1
Filtre
Ajouter des filtres








Gamme d'année
1.
IBJ-Iranian Biomedical Journal. 2011; 15 (1,2): 38-43
Dans Anglais | IMEMR | ID: emr-129775

Résumé

The aim of the present study was to investigate the in vitro effects of mercury [Hg[+2], lead [Pb[+2]], silver [Ag[+2]], tin [Sn[+2]], bismuth [Bi[+3]] and indium [In[+3] ions on sperm creatine kinase. creatine kinase was isolated from human sperm homogenates after chromatography on a DEAE cellulose column. At 60 microg ml[-1] metal concentration, 70% of the creatine kinase activity was inhibited by Hg[+2], while at the same concentration, Pb[+2], Ag[+2], Sn[+2], Bi[+3] and In[+3] caused 68%, 66.5%, 65.7%, 64.7% and 62.7% inhibition, respectively. All six metal ions displayed a competitive type of inhibition mechanism for the isolated creatine kinase as analyzed by Lineweaver-Burk plot. KA values of Hg[+2], Pb[+2], Ag[+2], Sn[+2], Bi[+3] and In[+3] were calculated and 8.34 mM, 5 mM, 4.54 mM, 3.45 mM, 3.12 mM and 2.63 mM values were obtained, respectively. All the studied metal ions, at levels of 60 micro g ml[-1], may reduce normal sperm metabolism by inhibition of sperm creatine kinase, which probably is an important cause of infertility in men. However, further investigations, as in vitro and in vivo, are needed to elucidate the exact mechanism of heavy metals on male reproductive functioning at the molecular level


Sujets)
Humains , Mâle , Spermatozoïdes/effets des médicaments et des substances chimiques , Métaux lourds/toxicité , Infertilité masculine/enzymologie , Creatine kinase , Bismuth/toxicité , Indium/toxicité , Plomb/toxicité , Mercure/toxicité , Argent/toxicité , Étain/toxicité
SÉLECTION CITATIONS
Détails de la recherche