Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtre
Ajouter des filtres








Gamme d'année
1.
An. acad. bras. ciênc ; 89(3): 1655-1669, July-Sept. 2017. tab, graf
Article Dans Anglais | LILACS | ID: biblio-886724

Résumé

ABSTRACT Immobility time in the forced swimming has been described as analogous to emotional blunting or apathy and has been used for characterizing schizophrenia animal models. Several clinical studies support the use of NMDA receptor antagonists to model schizophrenia in rodents. Some works describe the effects of ketamine on immobility behavior but there is variability in the experimental design used leading to controversial results. In this study, we evaluated the effects of repeated administration of ketamine sub-anesthetic doses in forced swimming, locomotion in response to novelty and novel object recognition, aiming a broader evaluation of the usefulness of this experimental approach for modeling schizophrenia in mice. Ketamine (30 mg/kg/day i.p. for 14 days) induced a not persistent decrease in immobility time, detected 24h but not 72h after treatment. This same administration protocol induced a deficit in novel object recognition. No change was observed in mice locomotion. Our results confirm that repeated administration of sub-anesthetic doses of ketamine is useful in modeling schizophrenia-related behavioral changes in mice. However, the immobility time during forced swimming does not seem to be a good endpoint to evaluate the modeling of negative symptoms in NMDAR antagonist animal models of schizophrenia.


Sujets)
Animaux , Mâle , Lapins , Schizophrénie/physiopathologie , Natation/physiologie , Comportement animal/effets des médicaments et des substances chimiques , Modèles animaux de maladie humaine , Kétamine/pharmacologie , Anesthésiques dissociatifs/pharmacologie , Schizophrénie/induit chimiquement , Comportement animal/physiologie , Immobilisation/physiologie , Activité motrice/effets des médicaments et des substances chimiques , Activité motrice/physiologie
2.
Rev. bras. farmacogn ; 26(5): 611-618, Sept.-Oct. 2016. graf
Article Dans Anglais | LILACS | ID: lil-796131

Résumé

ABSTRACT Uliginosin B, a phloroglucinol isolated from Hypericum polyanthemum Klotzsch ex Reichardt, Hypericaceae, has antidepressant-like effect in the forced swimming test in rodents and inhibits monoamines neuronal reuptake without binding to their neuronal carriers. Studies showed the involvement of Na+,K+-ATPase brain activity in depressive disorders, as well as the dependence of neuronal monoamine transport from Na+ gradient generated by Na+,K+-ATPase. This study aimed at evaluating the effect of uliginosin B on Na+,K+-ATPase activity in mice cerebral cortex and hippocampus (1 and 3 h after the last administration) as well as the influence of veratrine, a Na+ channel opener, on the antidepressant-like effect of uliginosin B. Mice were treated (p.o.) with uliginosin B single (10 mg/kg) or repeated doses (10 mg/kg/day, 3 days). Acute administration reduced the immobility in the forced swimming test and tail suspension test and increased Na+,K+-ATPase activity in cerebral cortex 1 h after treating, whereas the repeated treatment induced the antidepressant-like effect and increased the Na+,K+-ATPase activity at both times evaluated. None treatment affected the hippocampus enzyme activity. Veratrine pretreatment prevented uliginosin B antidepressant-like effect in the forced swimming test, suggesting the involvement of Na+ balance regulation on this effect. Altogether, these data indicate that uliginosin B reduces the monoamine uptake by altering Na+ gradient.

SÉLECTION CITATIONS
Détails de la recherche