Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 1 de 1
Filtre
Ajouter des filtres








Gamme d'année
1.
Braz. j. med. biol. res ; 30(8): 967-70, Aug. 1997. tab
Article Dans Anglais | LILACS | ID: lil-197253

Résumé

Male Wistar rats were trained in one-trial step-down inhibitory avoidance using a 0.4-mA footshock. At various times after training (0, 1.5, 3,6 and 9 h for the animals implanted into the CA1 region of the hippocampus; 0 and 3 h for those implanted into the amygdala), these animals received microinfusions of SKF38393 (7.5 mug/side), SCH23390 (0.5 mug/side), norepinephrine (0.3 mug/side), timolol (0.3 mug/side), 8-OH-DPAT (2.5 mug/side), NAN-190 (2.5 mug/side), forskolin (0.5 mug/side), KT5720 (0.5 mug/side) or 8-Br-cAMP (1.25 mug/side). Rats were tested for retention 24 h after training. When given into the hippocampus 0 h post-training, norepinephrine enhanced memory whereas KT5720 was amnestic. When given 1.5 h after training, all treatments were ineffective. When given 3 or 6 h post-training, 8-Br-cAMP, forskolin, SKF38393, norepinephrine and NAN-190 caused memory facilitation, while KT5720, SCH23390, timolol and 8-OH-DPAT caused retrograde amnesia. Again, at 9 h after training, all treatments were inffective. When given into the amygdala, norepinephrine caused retrograde facilitation at 0 h after training. The other drugs infused into the amygdala did not cause any significant effect. These data suggest that in the hippocampus, but not in the amygdala, a cAMP/protein kinase A pathway is involved in memory cosolidation at 3 and 6 h after training, which is regulated by D1, Beta, and 5HT1A receptors. This correlates with data on increased post-training cAMP levels and a dual peak of protein kinase A activity and CREB-P levels (at 0 and 3-6 h) in rat hippocampus after training in this task. These results suggest that the hippocampus, but not the amygdala, is involved in long-term storage of step-down inhibitory avoidance in the rat.


Sujets)
Rats , Animaux , Mâle , Amygdale (système limbique)/effets des médicaments et des substances chimiques , Cyclic AMP-Dependent Protein Kinases/effets des médicaments et des substances chimiques , AMP cyclique/analyse , Hippocampe/effets des médicaments et des substances chimiques , Mémoire/physiologie , 8-Bromo AMP cyclique/pharmacologie , 7-Dipropylamino-5,6,7,8-tétrahydro-1-naphtol/pharmacologie , Benzazépines/pharmacologie , Colforsine/pharmacologie , Protéine de liaison à l'élément de réponse à l'AMP cyclique/analyse , Norépinéphrine/pharmacologie , Rat Wistar , Transduction du signal
SÉLECTION CITATIONS
Détails de la recherche