Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtre
Ajouter des filtres








Gamme d'année
1.
Article Dans Chinois | WPRIM | ID: wpr-659726

Résumé

The tumor targeted fluorescent magnetic IR780-Fe3 O4 nanoparticles were prepared for separation and detection of circulating tumor cells ( CTCs ) . These IR780-Fe3 O4 nanoparticles were characterized by electron microscopy, fluorescence spectrometer, and superconducting quantum interferometer. The targeting effect of IR780-Fe3 O4 nanoparticles was analyzed on the tumor and normal cells by confocal microscope and flow cytometry, and the confocal microscope was used to target the location of IR780-Fe3 O4 nanoparticles in MCF-7 cells. The standard curve was drawn and evaluated accorded to the IR780-Fe3 O4 nanoparticles fluorescence intensity of tumor cells after incubation. The results showed that IR780-Fe3 O4 nanoparticles could target a variety of CTCs. Furthermore, cellular localization experiment proved that IR780-Fe3 O4 nanoparticles could target the mitochondria of tumor cells. With the method of coupling magnetic Fe3 O4 nanoparticles, IR780 could well distinguish the tumor and normal cells, which could be used for separating and detecting the CTCs in simulated blood.

2.
Article Dans Chinois | WPRIM | ID: wpr-662283

Résumé

The tumor targeted fluorescent magnetic IR780-Fe3 O4 nanoparticles were prepared for separation and detection of circulating tumor cells ( CTCs ) . These IR780-Fe3 O4 nanoparticles were characterized by electron microscopy, fluorescence spectrometer, and superconducting quantum interferometer. The targeting effect of IR780-Fe3 O4 nanoparticles was analyzed on the tumor and normal cells by confocal microscope and flow cytometry, and the confocal microscope was used to target the location of IR780-Fe3 O4 nanoparticles in MCF-7 cells. The standard curve was drawn and evaluated accorded to the IR780-Fe3 O4 nanoparticles fluorescence intensity of tumor cells after incubation. The results showed that IR780-Fe3 O4 nanoparticles could target a variety of CTCs. Furthermore, cellular localization experiment proved that IR780-Fe3 O4 nanoparticles could target the mitochondria of tumor cells. With the method of coupling magnetic Fe3 O4 nanoparticles, IR780 could well distinguish the tumor and normal cells, which could be used for separating and detecting the CTCs in simulated blood.

SÉLECTION CITATIONS
Détails de la recherche