Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 5 de 5
Filtrer
Plus de filtres








Gamme d'année
1.
Immune Network ; : 311-315, 2016.
Article de Anglais | WPRIM | ID: wpr-25613

RÉSUMÉ

A pandemic influenza A (H1N1) virus strain was isolated from a pig farm in Korea in December 2009. The strain was propagated in and isolated from both the Madin-Darby canine kidney cell line and embryonated eggs. The partial and complete sequences of the strain were identical to those of A/California/04/2009, with >99% sequence similarity in the HA, NA, M, NS, NP, PA, PB1, and PB2 genes. The isolated strain was inactivated and used to prepare a swine influenza vaccine. This trial vaccine, containing the new isolate that has high sequence similarity with the pandemic influenza A (H1N1) virus, resulted in seroconversion in Guinea pigs and piglets. This strain could therefore be a potential vaccine candidate for swine influenza control in commercial farms.


Sujet(s)
Animaux , Agriculture , Lignée cellulaire , Oeufs , Cochons d'Inde , Vaccins antigrippaux , Grippe humaine , Rein , Corée , Orthomyxoviridae , Ovule , Pandémies , Séroconversion , Suidae
2.
Article de Anglais | WPRIM | ID: wpr-8376

RÉSUMÉ

PURPOSE: The Japanese encephalitis virus (JEV) genotype circulating in Korea has changed from G3 to G1. Therefore, the purpose of this study was to compare the antigenic relationship between the two genotypes by using antibody tests. MATERIALS AND METHODS: Blood samples from 42 sows and 216 horses were collected, and their seroprevalence was monitored using the hemagglutination inhibition and virus neutralization tests. Antisera against JEV G1 and G3 were isolated and prepared from guinea pigs. The cross-reactivity of these two viruses was then compared using the neutralizing antibody test. RESULTS: We found that there was a difference in the seropositive ratios of JEV G1 and G3. However, the difference was dependent on the antibody test used. There was also an observed difference in the antigenicity between the two genotypes, as ascertained using the neutralizing antibody test. CONCLUSION: There is an evident difference in JEV antigenicity between the genotypes G1 and G3. Therefore, we propose monitoring of the seroprevalence of JEV, and reevaluating the antigenicity of the current vaccine by using the relevant tests.


Sujet(s)
Animaux , Humains , Anticorps neutralisants , Asiatiques , Réactions croisées , Virus de l'encéphalite japonaise (espèce) , Encéphalite japonaise , Génotype , Cochons d'Inde , Hémagglutination , Equus caballus , Sérums immuns , Corée , Tests de neutralisation , Études séroépidémiologiques
3.
Article de Anglais | WPRIM | ID: wpr-67602

RÉSUMÉ

Active serologic surveillance is necessary to control the spread of the avian influenza virus (AIV). In this study, we evaluated a commercially-available cELISA in terms of its ability to detect AIV antibodies in the sera of 3,358 animals from twelve species. cELISA detected antibodies against reference H1- through H15-subtype AIV strains without cross reactivity. Furthermore, the cELISA was able to detect antibodies produced following a challenge of the AIV H9N2 subtype in chickens, or following vaccination of the AIV H9 or H5 subtypes in chickens, ducks and geese. Next, we tested the sensitivity and specificity of the cELISA with sera from twelve different animal species, and compared these results with those obtained by the hemagglutination-inhibition (HI) test, the "gold standard" in AIV sera surveillance, a second commercially-available cELISA (IZS ELISA), or the agar gel precipitation (AGP) test. Compared with the HI test, the sensitivities and specificities of cELISA were 95% and 96% in chicken, 86% and 88% in duck, 97% and 100% in turkey, 100% and 87% in goose, and 91% and 97% in swine, respectively. The sensitivities and specificities of the cELISA in this study were higher than those of IZS ELISA for the duck, turkey, goose, and grey partridge sera samples. The results of AGP test against duck and turkey sera also showed significant correlation with the results of cELISA (R-value >0.9). In terms of flock sensitivity, the cELISA correlated better with the HI test than with commercially-available indirect ELISAs, with 100% flock sensitivity.


Sujet(s)
Animaux , Anticorps antiviraux/sang , Oiseaux , Test ELISA/méthodes , Equus caballus , Virus de la grippe A/immunologie , Vaccins antigrippaux/immunologie , Grippe chez les oiseaux/sang , Sensibilité et spécificité , Tests sérologiques , Spécificité d'espèce , Suidae
4.
Article de Anglais | WPRIM | ID: wpr-67603

RÉSUMÉ

Porcine endogenous retroviruses (PERVs) are members of family Retroviridae, genus Gamma retrovirus, and transmitted by both horizontally and vertically like other endogenous retroviruses (ERVs). PERV was initially described in the 1970s having inserted its gene in the host genome of different pig breeds, and three classes, PERV-A, PERV-B, and PERV-C are known. The therapeutic use of living cells, tissues, and organs from animals called xenotransplantation might relieve the limited supply of allografts in the treatment of organ dysfunction. Because of ethical considerations, compatible organ sizes, and physiology, the pig has been regarded as an alternative source for xenotransplantation. Sensitive duplex reverse transcription-polymerase chain reaction protocols for simultaneously detecting PERV gag mRNA and porcine glyceraldehydes 3-phosphate dehydrogenase mRNA in one tube was established. To compare the age-related PERV expression patterns of the lung, liver, spleen, kidney, heart, and pancreas in commercial pigs, 20 pigs from four age groups (5 heads each in 10 days-, 40 days-, 70 days-, and 110 days-old, respectively) were used in this study. The expression patterns of PERV were statistically different among age groups in lung, liver, and kidney (ANOVA, p<0.05). These data may support in the selection of appropriate donor pigs expressing low levels of PERV mRNA.


Sujet(s)
Animaux , Rétrovirus endogènes/métabolisme , Régulation de l'expression des gènes viraux/physiologie , ARN messager/génétique , ARN viral/génétique , RT-PCR/méthodes , Sensibilité et spécificité , Suidae/virologie
5.
Article de Anglais | WPRIM | ID: wpr-221145

RÉSUMÉ

The 23 open reading frame (ORF) 5 sequences of Korean type II porcine reproductive and respiratory syndrome virus (PRRSV) were collected from viremic sera from the (modified live vaccine) MLV-vaccinating and non-vaccinating farms from 2007 to 2008. The samples were phylogenetically analyzed with previous ORF5 sequences, including type I Korean PRRSV, and previously reported or collected sequences from 1997 to 2008. A MN184-like subgroup of type II Korean PRRSV was newly identified in the viremic sera collected from 2007 to 2008. And of the type I PRRSVs, one subgroup had 87.2~88.9% similarity with the Lelystad virus, showing a close relationship with the 27~2003 strain of Spain. The maximum parsimony tree of type II PRRSV from 1997 to 2008 showed that they had evolved to four lineages, subgroups 1, 2, 3 and 4. Most of the recently collected type II PRRSVs belonged to subgroup 4 (48%). The region of three B-cell epitopes and two T-cell epitopes of ORF5 amino acids sequences was considerably different from the MLV in subgroups 3 and 4. In conclusion, the existence of type I PRRSV, which was genetically different from Lelystad virus (Prototype of type I PRRSV), and heterologous type II PRRSVs of viremic pigs detected even in the MLV-vaccinating farms indicated the need for new vaccine approaches for the control of PRRSV in Korea.


Sujet(s)
Animaux , Déterminants antigéniques des lymphocytes B/immunologie , Déterminants antigéniques des lymphocytes T/immunologie , Évolution moléculaire , Corée , Cadres ouverts de lecture , Phylogenèse , Projets pilotes , Syndrome dysgénésique et respiratoire porcin/sang , Virus du syndrome respiratoire et reproducteur porcin/génétique , ARN viral/composition chimique , RT-PCR/médecine vétérinaire , Suidae , Vaccins antiviraux/immunologie , Virémie/génétique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE