RÉSUMÉ
Eccrine sweat glands (ESGs) perform critical functions in temperature regulation in humans. Foxa1 plays an important role in ESG maturation and sweat secretion. Its molecular mechanism, however, remains unknown. This study investigated the expression of Foxa1 and Na-K-ATPase (NKA) in rat footpads at different development stages using immunofluorescence staining, qRT-PCR, and immunoblotting. Also, bioinformatics analysis and Foxa1 overexpression and silencing were employed to evaluate Foxa1 regulation of NKA. The results demonstrated that Foxa1 was consistently expressed during the late stages of ESGs and had a significant role in secretory coil maturation during sweat secretion. Furthermore, the mRNA abundance and protein expression of NKA had similar accumulation trends to those of Foxa1, confirming their underlying connections. Bioinformatics analysis revealed that Foxa1 may interact with these two proteins via binding to conserved motifs in their promoter regions. Foxa1 gain-of-function and loss-of-function experiments in Foxa1-modified cells demonstrated that the activities of NKA were dependent on the presence of Foxa1. Collectively, these data provided evidence that Foxa1 may influence ESG development through transcriptional regulation of NKA expression.
RÉSUMÉ
@#Objective To provide recommendations for the management of intensive care unit patients without novel coronavirus disease 2019 (COVID-19). Methods We set up a focus group urgently and identified five key clinical issues through discussion. Total 23 databases or websites including PubMed, National Guideline Clearing-House, Chinese Center for Disease Control and Prevention and so on were searched from construction of the library until February 28, 2020. After group discussion and collecting information, we used GRADE system to classify the evidence and give recommendations. Then we apply the recommendations to manage pediatric intensive care unit in the department of critical care medicine in our hospital. Results We searched 13 321 articles and finally identified 21 liteteratures. We discussed twice, and five recommendations were proposed: (1) Patients should wear medical surgical masks; (2) Family members are not allowed to visit the ward and video visitation are used; (3) It doesn’t need to increase the frequency of environmental disinfection; (4) We should provide proper health education about the disease to non-medical staff (workers, cleaners); (5) Medical staff do not need wear protective clothing. We used these recommendations in intensive care unit management for 35 days and there was no novel coronavirus infection in patients, medical staff or non-medical staff. Conclusion The use of evidence-based medicine for emergency recommendation is helpful for the scientific and efficient management of wards, and is also suitable for the management of general intensive care units in emergent public health events.
RÉSUMÉ
ABSTRACT Objective This study aims to investigate the association of filamin A with the function and morphology of prostate cancer (PCa) cells, and explore the role of filamin A in the development of PCa, in order to analyze its significance in the evolvement of PCa. Materials and Methods A stably transfected cell line, in which filamin A expression was suppressed by RNA interference, was first established. Then, the effects of the suppression of filamin A gene expression on the biological characteristics of human PCa LNCaP cells were observed through cell morphology, in vitro cell growth curve, soft agar cloning assay, and scratch test. Results A cell line model with a low expression of filamin A was successfully constructed on the basis of LNCaP cells. The morphology of cells transfected with plasmid pSilencer-filamin A was the following: Cells were loosely arranged, had less connection with each other, had fewer tentacles, and presented a fibrous look. The growth rate of LNCap cells was faster than cells transfected with plasmid pSilencer-filamin A (P <0.05). The clones of LNCap cells in the soft agar cloning assay was significantly fewer than that of cells stably transfected with plasmid pSilencer-filamin A (P <0.05). Cells stably transfected with plasmid pSilencer-filamin A presented with a stronger healing and migration ability compared to LNCap cells (healing rate was 32.2% and 12.1%, respectively; P <0.05). Conclusion The expression of the filamin A gene inhibited the malignant development of LNCap cells. Therefore, the filamin A gene may be a tumor suppressor gene.