Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 1 de 1
Filtre
Ajouter des filtres








Gamme d'année
1.
Electron. j. biotechnol ; 19(3): 82-92, May 2016. ilus
Article Dans Anglais | LILACS | ID: lil-787013

Résumé

Lignocellulosic biomass is the most abundant renewable source of energy that has been widely explored as second-generation biofuel feedstock. Despite more than four decades of research, the process of ethanol production from lignocellulosic (LC) biomass remains economically unfeasible. This is due to the high cost of enzymes, end-product inhibition of enzymes, and the need for cost-intensive inputs associated with a separate hydrolysis and fermentation (SHF) process. Thermotolerant yeast strains that can undergo fermentation at temperatures above 40°C are suitable alternatives for developing the simultaneous saccharification and fermentation (SSF) process to overcome the limitations of SHF. This review describes the various approaches to screen and develop thermotolerant yeasts via genetic and metabolic engineering. The advantages and limitations of SSF at high temperatures are also discussed. A critical insight into the effect of high temperatures on yeast morphology and physiology is also included. This can improve our understanding of the development of thermotolerant yeast amenable to the SSF process to make LC ethanol production commercially viable.


Sujets)
Levures/génétique , Biomasse , Biocarburants , Lignine/composition chimique , Brassage d'ADN , Éthanol , Enzymes , Fermentation , Température élevée , Hydrolyse
SÉLECTION CITATIONS
Détails de la recherche