Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 1 de 1
Filtre
Ajouter des filtres








Gamme d'année
1.
Biomedical and Environmental Sciences ; (12): 107-116, 2016.
Article Dans Anglais | WPRIM | ID: wpr-258846

Résumé

<p><b>OBJECTIVE</b>To explore the relationship between different components of fine particulate matter (PM2.5) emitted from coal combustion and their cytotoxic effect in the vascular endothelial cells.</p><p><b>METHODS</b>Coal-fired PM(2.5) was sampled using a fixed-source dilution channel and flow sampler. The sample components were analyzed by ion chromatography and inductively coupled plasma atomic emission spectroscopy (ICP-AES). The PM(2.5) suspension was extracted using an ultrasonic water-bath method and then human umbilical vein endothelial cells (EA.hy926) were treated with various concentrations of the PM(2.5) suspension. Cell proliferation, oxidative DNA damage, and global DNA methylation levels were used to measure the cellular toxicity of PM(2.5) emitted from coal combustion.</p><p><b>RESULTS</b>Compared to other types of coal-fired PM(2.5) preparations, the PM2.5 suspension from Yinchuan coal had the highest cytotoxicity. PM(2.5) suspension from Datong coal had the highest toxic effect while that from Yinchuan coal had the lowest. Exposure to coal-fired PM(2.5) from Jingxi coal resulted in lower 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels. At the same dose, PM(2.5) emitted from coal combustion could produce more severe DNA impairment compared to that produced by carbon black. Cell survival rate was negatively correlated with chloride and potassium ions content. The 5-methylcytosine (5-mC) level was positively correlated with Mn and negatively correlated with Zn levels. The 8 OHdG% level was positively correlated with both Mn and Fe.</p><p><b>CONCLUSION</b>PM(2.5) emitted from coal combustion can decrease cell viability, increase global DNA methylation, and cause oxidative DNA damage in EA.hy926 cells. Metal components may be important factors that influence cellular toxicity.</p>


Sujets)
Prolifération cellulaire , Cendre de charbon , Toxicité , Altération de l'ADN , Méthylation de l'ADN , Cellules endothéliales de la veine ombilicale humaine , Tests de toxicité
SÉLECTION CITATIONS
Détails de la recherche