RÉSUMÉ
Background@#The medial temporal region is the earliest affected structure in patients with Alzheimer’s disease (AD), and its atrophy is known as the hallmark of AD. This study aimed to investigate the value of medial temporal atrophy (MTA) for detecting 18F-florbetaben positron emission tomography (PET)-proven AD pathology. @*Methods@#We retrospectively enrolled 265 subjects complaining of cognitive decline at a dementia outpatient clinic from March 2015 to December 2017. All subjects underwent brain magnetic resonance imaging, 18F-fluorodeoxyglucose PET, and 18F-florbetaben PET at baseline. We performed multivariable logistic regression analyses on variables including age, sex, years of education, white matter hyperintensities, apolipoprotein E (APOE) genotype, and memory composite scores in various combinations to investigate whether MTA was indicative of underlying AD pathology. @*Results@#Our sample population of 265 patients comprised 121 with AD-related cognitive impairment, 42 with Lewy bodies-related cognitive impairment, 32 with vascular cognitive impairment, and 70 with other or undetermined pathologies. In the multivariable logistic regression analyses, MTA was not an independent predictor of underlying AD pathology (P>0.200). The predictive power of underlying AD-related cognitive impairment significantly increased when multiple variables including APOE genotype and memory composite scores were considered together (area under the curve >0.750). @*Conclusion@#Our results suggest that MTA alone may be insufficient to accurately predict the presence of AD pathology. It is necessary to comprehensively consider various other factors such as APOE genotype and a detailed memory function to determine whether the patient is at high risk of AD.
RÉSUMÉ
Tight junctions (TJs) form continuous intercellular contacts in intercellular junctions. TJs involve integral proteins such as occludin (OCLN) and claudins (CLDNs) as well as peripheral proteins such as zona occludens-1 (ZO-1) and junctional adhesion molecules (JAMs). TJs control paracellular transportation across cell-to-cell junctions. Although TJs have been studied for several decades, comparison of the transcriptional-translational levels of these molecules in canine organs has not yet been performed. In this study, we examined uterine expression of CLDNs, OCLN, junction adhesion molecule-A, and ZO-1 in canine. Expression levels of canine uterine TJ proteins, including CLDN1, 2, 4, 5, JAM-A, ZO-1, and OCLN, were measured using reverse transcription PCR, real-time PCR, and Western blotting, whereas TJs distribution was determined by immunohistochemistry. The mRNA and protein expression levels of OCLN, CLDN-1, 4, JAM-1, and ZO-1 were identified in the uterus. Immunohistochemistry demonstrated that TJs were localized to the endometrium and/or myometrium of the uterus. Our results show that canine TJ proteins, including CLDNs, OCLN, JAM-A, and ZO-1, were expressed in the canine uterus. Taken together, these proteins may perform unique physiological roles in the uterus. Therefore, these findings may serve as a basis for further studies on TJ proteins and their roles in the physiological or pathological condition of the canine uterus.