Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtre
Ajouter des filtres








Gamme d'année
1.
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 76-81, 2015.
Article Dans Anglais | WPRIM | ID: wpr-636913

Résumé

This study investigated the protective effect of ATP on skeletal muscle satellite cells damaged by H2O2 in neonatal rats and the possible mechanism. The skeletal muscle satellite cells were randomly divided into four groups: normal group, model group (cells treated with 0.1 mmol/L H2O2 for 50 s), protection group (cells treated with 16, 8, 4, 2, 1, 0.5, or 0.25 mmol/L ATP for 24 h, and then with 0.1 mmol/L H2O2 for 50 s), proliferation group (cells treated with 16, 8, 4, 2, 1, 0.5, or 0.25 mmol/L ATP for 24 h). MTT assay, FITC+PI+DAPI fluorescent staining, Giemsa staining and immunofluorescence were performed to examine cell viability and apoptosis, and apoptosis-related proteins. The results showed that the survival rate of skeletal muscle satellite cells was decreased and the apoptosis rate was increased after H2O2 treatment (P<0.01). Different doses of ATP had different effects on skeletal muscle satellite cells damaged by H2O2: the survival rate of muscle satellite cells treated with ATP at 4, 2, or 1 mmol/L was increased. The protective effect was most profound on cells treated with 2 mmol/L ATP. Immunofluorescence showed that ATP could increase the number of Bcl-2-positive cells (P<0.01) and decrease the number of the Bax-positive cells (P<0.01). It was concluded that ATP could protect skeletal muscle satellite cells against H2O2 damage in neonatal rats, which may be attributed to the up-regulation of the expression of Bcl-2 and down-regulation of Bax, resulting in the suppression of apoptosis.

2.
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 76-81, 2015.
Article Dans Anglais | WPRIM | ID: wpr-331105

Résumé

This study investigated the protective effect of ATP on skeletal muscle satellite cells damaged by H₂O₂in neonatal rats and the possible mechanism. The skeletal muscle satellite cells were randomly divided into four groups: normal group, model group (cells treated with 0.1 mmol/L H₂O₂for 50 s), protection group (cells treated with 16, 8, 4, 2, 1, 0.5, or 0.25 mmol/L ATP for 24 h, and then with 0.1 mmol/L H₂O₂for 50 s), proliferation group (cells treated with 16, 8, 4, 2, 1, 0.5, or 0.25 mmol/L ATP for 24 h). MTT assay, FITC+PI+DAPI fluorescent staining, Giemsa staining and immunofluorescence were performed to examine cell viability and apoptosis, and apoptosis-related proteins. The results showed that the survival rate of skeletal muscle satellite cells was decreased and the apoptosis rate was increased after H₂O₂treatment (P<0.01). Different doses of ATP had different effects on skeletal muscle satellite cells damaged by H₂O₂: the survival rate of muscle satellite cells treated with ATP at 4, 2, or 1 mmol/L was increased. The protective effect was most profound on cells treated with 2 mmol/L ATP. Immunofluorescence showed that ATP could increase the number of Bcl-2-positive cells (P<0.01) and decrease the number of the Bax-positive cells (P<0.01). It was concluded that ATP could protect skeletal muscle satellite cells against H₂O₂damage in neonatal rats, which may be attributed to the up-regulation of the expression of Bcl-2 and down-regulation of Bax, resulting in the suppression of apoptosis.


Sujets)
Animaux , Rats , Adénosine triphosphate , Pharmacologie , Peroxyde d'hydrogène , Pharmacologie , Rat Sprague-Dawley , Cellules satellites du muscle squelettique
SÉLECTION CITATIONS
Détails de la recherche