Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 1 de 1
Filtre
Ajouter des filtres








Gamme d'année
1.
International Journal of Environmental Science and Technology. 2011; 8 (3): 501-512
Dans Anglais | IMEMR | ID: emr-123892

Résumé

A chelating resin is prepared by condensation polymerization of aniline with formaldehyde and characterized by Fourier transform infrared spectrometer, elemental analysis and thermogravimetric analysis and studied for the preconcentration and determination of trace Molybdate ion from environmental water sample using inductive couple plasma atomic emission spectroscopy. The optimum pH value for sorption of the metal ion was 5. The sorption capacity of functionalized resin is 3.1 mg/g. The chelating sorbent can be reused for 20 cycles of sorption-desorption without any significant change in sorption capacity. The best desorption of the metal ions from resin was obtained by 0.5 mol/L nitric acid as eluting agent. The profile of molybdenum uptake on this sorbent reflects good accessibility of the chelating sites in the aniline- formaldehyde. Scatchard analysis revealed that the homogeneous binding sites were formed in the polymers. The equilibrium adsorption data of Molybdate ion modified resin were analyzed by five isotherm models such as Langmuir, Freundlich and Temkin. Langmuir isotherm parameters obtained from the four Langmuir linear equations by using linear method. Based on the Langmuir isotherm analysis, the monolayer adsorption capacity was determined to be 4.03 mg/g at 20 °C. The method was applied for molybdenum ions determination from river water sample


Sujets)
Chélateurs , Dérivés de l'aniline , Adsorption , Extraction en phase solide , Rivières/composition chimique
SÉLECTION CITATIONS
Détails de la recherche