Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtre
Ajouter des filtres








Gamme d'année
1.
Braz. J. Pharm. Sci. (Online) ; 53(1): e15218, 2017. tab, graf
Article Dans Anglais | LILACS | ID: biblio-839437

Résumé

Abstract Gastroretentive floating microparticles were developed and evaluated for the controlled metronidazole delivery for treatment of gastric disease. Floating microparticles, varying in proportions of chitosan and hydroxypropyl methylcellulose or ethylcellulose, were obtained by spray drying. Floating microparticles were characterized by physicochemical and in vitro studies, according to their floating ability and drug delivery. Microparticles presented mean diameter from 1.05 to 2.20 µm. The infrared spectroscopy confirmed the drug encapsulation and showed no chemical linkage between microparticles components. X-ray diffraction showed changes in the drug`s solid state, from crystalline to amorphous, indicating partial drug encapsulation, due to the presence of some crystalline peaks of metronidazole in microparticles. All microparticles floated immediately in contact of simulated gastric fluid and both floating and drug release profiles were dependent of microparticles composition. Microparticles samples constituted by chitosan and hydroxypropyl methylcellulose revealed the best relationship between floating duration and drug release, remaining floating during the occurrence of the drug release, ideal condition for the floating gastroretentive systems.


Sujets)
Broyage de Déchets Solides , Libération de médicament , Métronidazole/administration et posologie , Chitosane/pharmacocinétique , Dérivés de l'hypromellose
2.
Braz. J. Pharm. Sci. (Online) ; 53(2): e15250, 2017. tab, graf
Article Dans Anglais | LILACS | ID: biblio-839482

Résumé

ABSTRACT Halcinonide is a high-potency topical glucocorticoid used for skin inflammation treatments that presents toxic systemic effects. A simple and quick analytical method to quantify the amount of halcinonide encapsulated into lipid nanoparticles, such as polymeric lipid-core nanoparticles and solid lipid nanoparticles, was developed and validated regarding the drug's encapsulation efficiency and in vitro permeation. The development and validation of the analytical method were carried out using the high performance liquid chromatography with the UV detection at 239 nm. The validation parameters were specificity, linearity, precision and accuracy, limits of detection and quantitation, and robustness. The method presented an isocratic flow rate of 1.0 mL.min-1, a mobile phase methanol:water (85:15 v/v), and a retention time of 4.21 min. The method was validated according to international and national regulations. The halcinonide encapsulation efficiency in nanoparticles was greater than 99% and the in vitro drug permeation study showed that less than 9% of the drug permeated through the membrane, indicating a nanoparticle reservoir effect, which can reduce the halcinonide's toxic systemic effects. These studies demonstrated the applicability of the developed and validated analytical method to quantify halcinonide in lipid nanoparticles.


Sujets)
Halcinonide/pharmacologie , Chromatographie en phase liquide à haute performance/méthodes , Études de validation , Nanoparticules/statistiques et données numériques , Administration par voie topique
SÉLECTION CITATIONS
Détails de la recherche