Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtre
Ajouter des filtres








Gamme d'année
1.
Braz. J. Pharm. Sci. (Online) ; 56: e18579, 2020. tab, graf
Article Dans Anglais | LILACS | ID: biblio-1132059

Résumé

Temozolomide, a chemotherapeutic drug that is often administered for the treatment of brain cancer has severe side effects and a poor aqueous solubility. In order to decrease the detrimental effect of the drug over healthy cells, a novel drug delivery vehicle was developed where the therapeutic drug was encapsulated within the hydrophobic cavities of b-CD modified magnetite nanoparticles, which are embedded in chitosan nanobeads prepared by salt addition. In-vitro studies have shown that the magnetic properties of the novel delivery vehicle are adequate for targeted drug delivery applications under an external magnetic field. Additionally, an increase in the amount of chitosan was shown to exhibit a strong shielding effect over the magnetic properties of the delivery vehicle, which lead to deterioration of the amount of captured drug at the targeted area, suggesting a delicate balance between the amounts of constituents composing the drug delivery vehicle.


Sujets)
Techniques in vitro/instrumentation , Tumeurs du cerveau , Témozolomide/analyse , Préparations pharmaceutiques/administration et posologie , Cyclodextrines/pharmacologie , Chitosane/antagonistes et inhibiteurs , Oxyde ferrosoferrique/pharmacologie , Nanoparticules de magnétite/effets indésirables , Champs magnétiques/effets indésirables , Magnétisme/classification
2.
Braz. J. Pharm. Sci. (Online) ; 54(2): e17513, 2018. tab, graf, ilus
Article Dans Anglais | LILACS | ID: biblio-951937

Résumé

ABSTRACT Temozolomide is a poorly soluble anti-cancer drug used in the treatment of some brain cancers. Following literature reports about the enhancement of solubility and stability for these kinds of drugs upon complexation with cyclodextrins, we aimed to form an inclusion complex between temozolomide and the different types of cyclodextrins (CDs) to enhance its solubility. In this study, three different cyclodextrins (ß -CD, hydroxyl-ß-CD and γ-CD) were used, and changes in solubility was measured by UV-Vis Spectroscopy and HPLC. Morphological changes upon complexation were shown by the Scanning Electron Microscope (SEM), and weight loss profiles with respect to temperatures which were unique to the compounds were shown by Thermogravimetric Analysis. Changes in heat release profiles were shown by Differential Scanning Calorimeter (DSC). Drug solubility was measured to be increased to around 25% for 1:1 molar ratio for all used CD complexations. Changes of morphology, heat release and weight loss profiles are consistent with the formation of an inclusion complex between CDs and temozolomide. In this study, success was shown in the enhancement of temozolomide solubility upon complexation with different types of CDs. It has been demonstrated that cyclodextrins can be used as complexing agents for poorly soluble anti-cancer drugs, increasing their solubility and hence drug availability


Sujets)
Solubilité , Anticarcinogènes/analyse , Cyclodextrines/effets indésirables , Préparations pharmaceutiques , Microscopie électronique à balayage/méthodes
SÉLECTION CITATIONS
Détails de la recherche