Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 6 de 6
Filtre
Ajouter des filtres








Gamme d'année
1.
2.
Annals of Dermatology ; : 100-101, 2017.
Article Dans Anglais | WPRIM | ID: wpr-132698

Résumé

No abstract available.


Sujets)
Lipome , Lymphocèle , Cuisse
3.
Annals of Dermatology ; : 100-101, 2017.
Article Dans Anglais | WPRIM | ID: wpr-132695

Résumé

No abstract available.


Sujets)
Lipome , Lymphocèle , Cuisse
4.
Annals of Dermatology ; : 787-788, 2016.
Article Dans Anglais | WPRIM | ID: wpr-181438

Résumé

No abstract available.


Sujets)
Faux anévrisme
5.
Korean Journal of Dermatology ; : 750-751, 2016.
Article Dans Coréen | WPRIM | ID: wpr-24859

Résumé

No abstract available.


Sujets)
Aisselle , Maladie de Paget extramammaire
6.
The Korean Journal of Physiology and Pharmacology ; : 259-270, 2001.
Article Dans Anglais | WPRIM | ID: wpr-727427

Résumé

The present study was attempted to investigate the characteristics of epibatidine on secretion of catecholamines (CA) from the isolated perfused model of the rat adrenal gland, and to establish the mechanism of action. Epibatidine (3X10(-8) M) injected into an adrenal vein produced a great inhibition in secretory response of CA from the perfused rat adrenal gland. However, upon the repeated injection of epibatidine (3X10(-8) M) at 15 min-intervals, CA secretion was rapidly decreased after second injection of epibatidine. However, there was no statistical difference between CA secretory responses of both 1st and 2nd periods by the successive administration of epibatidine at 120 min-intervals. Tachyphylaxis to releasing effects of CA evoked by epibatidine was observed by the repeated administration. Therefore, in all subsequent experiments, epibatidine was not administered successively more than twice only 120 min-intervals. The epibatidine-induced CA secretion was markedly inhibited by the pretreatment with atropine, chlorisondamine, pirenzepine, nicardipine, TMB-8, and perfusion of Ca2+/-free Krebs solution containing EGTA, while was not affected by diphenhydramine. Moreover, the CA secretion evoked by ACh for 1st period (0apprx4 min) was greatly potentiated by the simultaneous perfusion of epibatidine (1.5X10(-8) M), but followed by time-dependently gradual reduction after 2nd period. The CA release evoked by high potassium (5.6+/-10(-8) M) for 1st period (0apprx4 min) was also enhanced by the simultaneous perfusion of epibatidine, but those after 2nd period were not affected. Taken together, these experimental data suggest that epibatidine causes catecholamine secretion in a calcium dependent fashion from the perfused rat adrenal gland through activation of neuronal cholinergic (nicotinic and muscarinic) receptors located in adrenomedullary chromaffin cells. It also seems that epibatidine-evoked catecholamine release is not relevant to stimulation of histaminergic receptors.


Sujets)
Animaux , Rats , Glandes surrénales , Atropine , Calcium , Catécholamines , Chlorisondamine , Cellules chromaffines , Diphénhydramine , Acide egtazique , Neurones , Nicardipine , Perfusion , Pirenzépine , Potassium , Tachyphylaxie , Veines
SÉLECTION CITATIONS
Détails de la recherche