RÉSUMÉ
Abstract The biodiversity and evolution of the microbial community in açai fruits (AF) between three geographical origins and two spontaneous decay conditions were examined by applying culture-independent methods. Culture-independent methods based on 16S rRNA from fifteen samples revealed that Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes and Acidobacteria were the most abundant phyla. At the genus level, Massilia (taxon with more than 50% of the sequences remaining constant during the 30 h of decay), Pantoea, Naxibacter, Enterobacter, Raoultella and Klebsiella were identified, forming the carposphere bacterial microbiota of AF. AF is fibre-rich and Massilia bacteria could find a large quantity of substrate for its growth through cellulase production. Beta diversity showed that the quality parameters of AF (pH, soluble solids, titratable acidity and lipids) and elemental analysis (C, N, H and C/N ratio) were unable to drive microbial patterns in AF. This research offers new insight into the indigenous bacterial community composition on AF as a function of spontaneous postharvest decay.
Sujet(s)
Bactéries/isolement et purification , Euterpe/composition chimique , Fruit/microbiologie , Phylogenèse , Bactéries/classification , Bactéries/génétique , Bactéries/métabolisme , Biodiversité , Séquençage nucléotidique à haut débit , Microbiote , Euterpe/microbiologie , Fruit/composition chimiqueRÉSUMÉ
Abstract The biodiversity and evolution of the microbial community in açai fruits (AF) between three geographical origins and two spontaneous decay conditions were examined by applying culture-independent methods. Culture-independent methods based on 16S rRNA from fifteen samples revealed that Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes and Acidobacteria were the most abundant phyla. At the genus level, Massilia (taxon with more than 50% of the sequences remaining constant during the 30 h of decay), Pantoea, Naxibacter, Enterobacter, Raoultella and Klebsiella were identified, forming the carposphere bacterial microbiota of AF. AF is fibre-rich and Massilia bacteria could find a large quantity of substrate for its growth through cellulase production. Beta diversity showed that the quality parameters of AF (pH, soluble solids, titratable acidity and lipids) and elemental analysis (C, N, H and C/N ratio) were unable to drive microbial patterns in AF. This research offers new insight into the indigenous bacterial community composition on AF as a function of spontaneous postharvest decay.