Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 1 de 1
Filtre
Ajouter des filtres








Gamme d'année
1.
Singapore medical journal ; : 608-614, 2012.
Article Dans Anglais | WPRIM | ID: wpr-249660

Résumé

<p><b>INTRODUCTION</b>Peroxisomal disorders are subdivided into peroxisome biogenesis disorders (PBDs) and single peroxisomal enzyme deficiency. Many peroxisomal diseases exhibit excessive oxidative stress, leading to neurological alterations and dysfunction. Peroxisomes use oxygen in oxidative reactions that generate hydrogen peroxide. This study aimed to investigate various oxidative stress parameters in patients suffering from peroxisomal disorders.</p><p><b>METHODS</b>A total of 20 patients with peroxisomal disorders, aged six months to 13 years (mean age 5.9 ± 3.2 years), were compared to 14 healthy controls. All individuals were subjected to full history-taking, including a three-generation pedigree analysis concerning parental consanguinity and similarly affected members in the family, with meticulous clinical examination to detect any malformation or anomaly. Estimation of very-long-chain fatty acids and phytanic acid was done to verify the diagnosis. Brain magnetic resonance imaging, electroencephalogram, visual evoked potential, auditory potential and plain radiography were conducted to assess the pathological condition of the patients. Oxidative stress parameters, including nitric oxide (NO), malondialdehyde (MDA) and superoxide dismutase (SOD), were estimated in both the patients and controls.</p><p><b>RESULTS</b>Significant increases in both MDA and NO were found in patients with PBDs. It was also demonstrated that SOD was significantly lower in patients with PDB than the controls.</p><p><b>CONCLUSION</b>This study sheds more light on the link between oxidative stress and peroxisomal disorders, as oxidative stress may be a hallmark of peroxisomal disorders. Consequently, one of the useful neuronal rescue strategies could be treatment with antioxidant agents in addition to other lines of treatments.</p>


Sujets)
Adolescent , Enfant , Enfant d'âge préscolaire , Humains , Nourrisson , Marqueurs biologiques , Sang , Études cas-témoins , Consanguinité , Égypte , Malonaldéhyde , Sang , Analyse appariée , Monoxyde d'azote , Sang , Stress oxydatif , Génétique , Pedigree , Maladies péroxysomiales , Sang , Génétique , Superoxide dismutase , Sang
SÉLECTION CITATIONS
Détails de la recherche