Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtre
Ajouter des filtres








Gamme d'année
1.
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 642-647, 2012.
Article Dans Anglais | WPRIM | ID: wpr-233105

Résumé

Endothelial dysfunction is implicated in a variety of cardiovascular diseases although the detailed mechanisms are not yet completely understood. A relationship has been suggested to exist between inflammation and endothelial dysfunction. TNF-α serves as one of the most important pro-inflammatory cytokines. The main objectives of the present study were to explore the effect of PKC-ζ on TNF-α-impaired endothelial function as well as the underlying mechanisms. Acetylcholine-induced endothelium-dependent vasodilation of mouse thoracic aorta stimulated by TNF-α was initially determined. PKC-ζ deficient mice and the specific inhibitor of NADPH oxidase were respectively applied to elucidate their roles in TNF-α-induced endothelial dysfunction. In vitro superoxide generation in HAECs was detected by DHE staining after administration of TNF-α. Meanwhile, the regulatory p47(phox) subunit of NADPH oxidase was evaluated by Western blotting and RT-PCR. The results showed that TNF-α conspicuously impaired endothelium-dependent vasodilation and the impairment was attenuated by either depleting PKC-ζ or inhibiting NADPH oxidase. In vitro TNF-α increased superoxide production and p47(phox) expression in HAECs, and such increases could be ameliorated by the specific PKC-ζ inhibitor. Our findings suggest that superoxide over-production triggered by PKC-ζ-dependent NADPH oxidase activation contributes to TNF-α-induced endothelial dysfunction.


Sujets)
Animaux , Mâle , Souris , Endothélium vasculaire , Métabolisme , NADPH oxidase , Métabolisme , Protéine kinase C , Métabolisme , Facteur de nécrose tumorale alpha , Métabolisme
2.
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 642-7, 2012.
Article Dans Anglais | WPRIM | ID: wpr-636602

Résumé

Endothelial dysfunction is implicated in a variety of cardiovascular diseases although the detailed mechanisms are not yet completely understood. A relationship has been suggested to exist between inflammation and endothelial dysfunction. TNF-α serves as one of the most important pro-inflammatory cytokines. The main objectives of the present study were to explore the effect of PKC-ζ on TNF-α-impaired endothelial function as well as the underlying mechanisms. Acetylcholine-induced endothelium-dependent vasodilation of mouse thoracic aorta stimulated by TNF-α was initially determined. PKC-ζ deficient mice and the specific inhibitor of NADPH oxidase were respectively applied to elucidate their roles in TNF-α-induced endothelial dysfunction. In vitro superoxide generation in HAECs was detected by DHE staining after administration of TNF-α. Meanwhile, the regulatory p47(phox) subunit of NADPH oxidase was evaluated by Western blotting and RT-PCR. The results showed that TNF-α conspicuously impaired endothelium-dependent vasodilation and the impairment was attenuated by either depleting PKC-ζ or inhibiting NADPH oxidase. In vitro TNF-α increased superoxide production and p47(phox) expression in HAECs, and such increases could be ameliorated by the specific PKC-ζ inhibitor. Our findings suggest that superoxide over-production triggered by PKC-ζ-dependent NADPH oxidase activation contributes to TNF-α-induced endothelial dysfunction.

SÉLECTION CITATIONS
Détails de la recherche