Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtre
1.
Journal of Biomedical Engineering ; (6): 852-858, 2023.
Article Dans Chinois | WPRIM | ID: wpr-1008909

Résumé

Alzheimer's disease (AD) is an irreversible neurodegenerative disorder that damages patients' memory and cognitive abilities. Therefore, the diagnosis of AD holds significant importance. The interactions between regions of interest (ROIs) in the brain often involve multiple areas collaborating in a nonlinear manner. Leveraging these nonlinear higher-order interaction features to their fullest potential contributes to enhancing the accuracy of AD diagnosis. To address this, a framework combining nonlinear higher-order feature extraction and three-dimensional (3D) hypergraph neural networks is proposed for computer-assisted diagnosis of AD. First, a support vector machine regression model based on the radial basis function kernel was trained on ROI data to obtain a base estimator. Then, a recursive feature elimination algorithm based on the base estimator was applied to extract nonlinear higher-order features from functional magnetic resonance imaging (fMRI) data. These features were subsequently constructed into a hypergraph, leveraging the complex interactions captured in the data. Finally, a four-dimensional (4D) spatiotemporal hypergraph convolutional neural network model was constructed based on the fMRI data for classification. Experimental results on the Alzheimer's Disease Neuroimaging Initiative (ADNI) database demonstrated that the proposed framework outperformed the Hyper Graph Convolutional Network (HyperGCN) framework by 8% and traditional two-dimensional (2D) linear feature extraction methods by 12% in the AD/normal control (NC) classification task. In conclusion, this framework demonstrates an improvement in AD classification compared to mainstream deep learning methods, providing valuable evidence for computer-assisted diagnosis of AD.


Sujets)
Humains , Maladie d'Alzheimer/imagerie diagnostique , , Imagerie par résonance magnétique/méthodes , Neuroimagerie/méthodes , Diagnostic assisté par ordinateur , Encéphale , Dysfonctionnement cognitif
2.
Journal of Biomedical Engineering ; (6): 47-55, 2021.
Article Dans Chinois | WPRIM | ID: wpr-879248

Résumé

The pathogenesis of Alzheimer's disease (AD), a common neurodegenerative disease, is still unknown. It is difficult to determine the atrophy areas, especially for patients with mild cognitive impairment (MCI) at different stages of AD, which results in a low diagnostic rate. Therefore, an early diagnosis model of AD based on 3-dimensional convolutional neural network (3DCNN) and genetic algorithm (GA) was proposed. Firstly, the 3DCNN was used to train a base classifier for each region of interest (ROI). And then, the optimal combination of the base classifiers was determined with the GA. Finally, the ensemble consisting of the chosen base classifiers was employed to make a diagnosis for a patient and the brain regions with significant classification capability were decided. The experimental results showed that the classification accuracy was 88.6% for AD


Sujets)
Humains , Maladie d'Alzheimer/diagnostic , Encéphale/imagerie diagnostique , Dysfonctionnement cognitif/diagnostic , Diagnostic précoce , Imagerie par résonance magnétique , , Maladies neurodégénératives
SÉLECTION CITATIONS
Détails de la recherche