RÉSUMÉ
OBJECTIVE@#To explore the anti-inflammatory effects of ethyl lithospermate in lipopolysaccharide (LPS)-stimulated RAW 264.7 murine-derived macrophages and zebrafish, and its underlying mechanisms.@*METHODS@#3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazoliumbromide (MTT) assays were performed to investigate the toxicity of ethyl lithospermate at different concentrations (12.5-100 µ mol/L) in RAW 264.7 cells. The cells were stimulated with LPS (100 ng/mL) for 12 h to establish an inflammation model in vitro, the production of pro-inflammatory cytokines interleukin (IL)-6 and tumor necrosis factor α (TNF-α) were assessed by enzyme linked immunosorbent assay (ELISA). Western blot was used to ascertain the protein expressions of signal transducer and activator of transcription 3 (STAT3), nuclear factor kappa B (NF-κB) p65, phospho-STAT3 (p-STAT3, Tyr705), inhibitor of NF-κB (IκB) α, and phospho-I κB α (p-IκB α, Ser32), and confocal imaging was used to identify the nuclear translocation of NF-κB p65 and p-STAT3 (Tyr705). Additionally, the yolk sacs of zebrafish (3 days post fertilization) were injected with 2 nL LPS (0.5 mg/mL) to induce an inflammation model in vivo. Survival analysis, hematoxylin-eosin (HE) staining, observation of neutrophil migration, and quantitative real-time polymerase chain reaction (qRT-PCR) were used to further study the anti-inflammatory effects of ethyl lithospermate and its probable mechanisms in vivo.@*RESULTS@#The non-toxic concentrations of ethyl lithospermate have been found to range from 12.5 to 100 µ mol/L. Ethyl lithospermate inhibited the release of IL-6 and TNF-α(P<0.05 or P<0.01), decreased IκBα degradation and phosphorylation (P<0.05) as well as the nuclear translocation of NF-κB p65 and p-STAT3 (Tyr705) in LPS-induced RAW 264.7 cells (P<0.01). Ethyl lithospermate also decreased inflammatory cells infiltration and neutrophil migration while increasing the survival rate of LPS-stimulated zebrafish (P<0.05 or P<0.01). In addition, ethyl lithospermate also inhibited the mRNA expression levels of of IL-6, TNF-α, IκBα, STAT3, and NF-κB in LPS-stimulated zebrafish (P<0.01).@*CONCLUSION@#Ethyl lithospermate exerts anti-Inflammatory effected by inhibiting the NF-κB and STAT3 signal pathways in RAW 264.7 macrophages and zebrafish.
Sujet(s)
Animaux , Souris , Facteur de transcription NF-kappa B/métabolisme , Lipopolysaccharides , Danio zébré , Inhibiteur alpha de NF-KappaB/métabolisme , Interleukine-6/métabolisme , Facteur de nécrose tumorale alpha/métabolisme , Facteur de transcription STAT-3/métabolisme , Inflammation/métabolisme , Anti-inflammatoires/usage thérapeutiqueRÉSUMÉ
Lipopolysaccharide (LPS)-induced inflammation causes massive threatening diseases, such as sepsis, acute lung injury and multiple organ dysfunction syndrome. Efficient treatment to prevent inflammation is crucial in LPS-induced inflammatory diseases. Heat-clearing Chinese medicines (CMs) have been used to ameliorate LPS-induced inflammation in China for centuries. Heat-clearing CMs regulate inflammatory pathways, thereby inhibiting the release of inflammatory factors. This review aimed to introduce promising heat-clearing CMs countering LPS-induced inflammation in the last 5 years, exploring the underlying molecular mechanisms.