Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtre
Ajouter des filtres








Gamme d'année
1.
Immune Network ; : e19-2020.
Article | WPRIM | ID: wpr-835441

Résumé

Sestrin2 (Sesn2), a metabolic regulator, accumulates in response to a diverse array of cellular stresses. Sesn2 regulates cellular metabolism by inhibiting the mammalian target of rapamycin complex 1 through the AMP-activated protein kinase (AMPK) signaling pathway. Recently, researchers reported that Sesn2 regulates the differentiation and function of innate immune cells and T cells; however, the role of Sesn2 in B cells is largely unknown. In this study, we investigated the role of Sesn2 in Ig class switching and Ig production in mouse B cells. We observed that mouse B cells express Sesn2 mRNA. Interestingly, the expression of germline ε transcripts (GLTε) was selectively decreased in lipopolysaccharide-stimulated Sesn2−/− splenocytes. Overexpression of Sesn2 increased GLTε promoter activity in B cells. In addition, AICAR (an activator of AMPK) selectively increased IL-4-induced GLTε expression and surface IgE (sIgE) expression in splenocytes. Furthermore, AICAR selectively enhanced IL-4-induced GLTε expression, sIgE expression, and IgE production by anti-CD40-stimulated B cells. We observed that ovalbumin (OVA)-specific IgE concentration was reduced in OVA-challenged Sesn2−/− mice. Taken together, these results indicate that Sesn2-AMPK signaling selectively enhances IL-4-induced IgE class switching and IgE production by B cells, suggesting that this could be a therapeutic strategy targeting Sesn2 in IgE-mediated allergic diseases.

2.
International Journal of Stem Cells ; : 177-186, 2018.
Article Dans Anglais | WPRIM | ID: wpr-739929

Résumé

BACKGROUND AND OBJECTIVES: Glial scarring and inflammation after spinal cord injury (SCI) interfere with neural regeneration and functional recovery due to the inhibitory microenvironment of the injured spinal cord. Stem cell transplantation can improve functional recovery in experimental models of SCI, but many obstacles to clinical application remain due to concerns regarding the effectiveness and safety of stem cell transplantation for SCI patients. In this study, we investigated the effects of transplantation of human mesenchymal stem cells (hMSCs) that were genetically modified to express Olig2 in a rat model of SCI. METHODS: Bone marrow-derived hMSCs were genetically modified to express Olig2 and transplanted one week after the induction of contusive SCI in a rat model. Spinal cords were harvested 7 weeks after transplantation. RESULTS: Transplantation of Olig2-expressing hMSCs significantly improved functional recovery in a rat model of contusive SCI model compared to the control hMSC-transplanted group. Transplantation of Olig2-expressing hMSCs also attenuated glial scar formation in spinal cord lesions. Immunohistochemical analysis showed that transplanted Olig2-expressing hMSCs were partially differentiated into Olig1-positive oligodendrocyte-like cells in spinal cords. Furthermore, NF-M-positive axons were more abundant in the Olig2-expressing hMSC-transplanted group than in the control hMSC-transplanted group. CONCLUSIONS: We suggest that Olig2-expressing hMSCs are a safe and optimal cell source for treating SCI.


Sujets)
Humains , Axones , Cicatrice , Inflammation , Cellules souches mésenchymateuses , Modèles animaux , Modèles théoriques , Régénération , Traumatismes de la moelle épinière , Moelle spinale , Transplantation de cellules souches , Transplantation
3.
Tissue Engineering and Regenerative Medicine ; (6): 601-609, 2016.
Article Dans Anglais | WPRIM | ID: wpr-644827

Résumé

Enhancing adult nerve regeneration is a potential therapeutic strategy for treating spinal cord injury. Vascular endothelial growth factor (VEGF) is a major contributor to angiogenesis, which can reduce the spinal cord injury by inhibiting the inflammation and improve recovery after spinal cord injury. We have previously demonstrated that exogenous VEGF has neurotrophic effects on injured spinal nerves in organotypic spinal cord slice cultures. However, the mechanisms underlying the neurite growth by exogenous VEGF remain to be explored in spinal cord. In this study, we found out that exogenous VEGF mediated axonal outgrowth through VEGF receptor 1 (VEGFR1) and VEGFR2, both of which were expressed on organotypic spinal cord slices. Although VEGFR1 and VEGFR2 were constitutively expressed in some cells of control spinal cord slices, VEGF treatment upregulated expression of VEGFR1 and VEGFR2. Both VEGFR1 and VEGFR2 were expressed in neuronal cells as well as glial cells of organotypic spinal cord slices. We also observed that VEGF-induced axonal outgrowth was attenuated by a specific mitogen-activated protein kinase (MAPK) inhibitor PD98059 and a specific phosphoinositide 3-kinase (PI3K) inhibitor wortmannin. Thus, these findings suggest that these MAPK and PI3K pathways have important roles in regulating VEGF-induced axonal outgrowth in the postnatal spinal cord.


Sujets)
Adulte , Humains , Axones , Inflammation , Régénération nerveuse , Neurites , Névroglie , Neurones , Protein kinases , Récepteurs aux facteurs de croissance endothéliale vasculaire , Traumatismes de la moelle épinière , Moelle spinale , Nerfs spinaux , Facteur de croissance endothéliale vasculaire de type A , Récepteur-1 au facteur croissance endothéliale vasculaire
SÉLECTION CITATIONS
Détails de la recherche