Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 5 de 5
Filtre
Ajouter des filtres








Gamme d'année
1.
Immune Network ; : e51-2020.
Article Dans Anglais | WPRIM | ID: wpr-898552

Résumé

Respiratory syncytial virus (RSV) causes severe pulmonary disease in infants, young children, and the elderly. Formalin inactivated RSV (FI-RSV) vaccine trials failed due to vaccine enhanced respiratory disease, but the underlying immune mechanisms remain not fully understood. In this study, we have used wild type C57BL/6 and CD4 knockout (CD4KO) mouse models to better understand the roles of the CD4 T cells and cellular mechanisms responsible for enhanced respiratory disease after FI-RSV vaccination and RSV infection. Less eosinophil infiltration and lower pro-inflammatory cytokine production were observed in FI-RSV vaccinated CD4KO mice after RSV infection compared to FI-RSV vaccinated C57BL/6 mice. NK cells and cytokine-producing CD8 T cells were recruited at high levels in the airways of CD4KO mice, correlating with reduced respiratory disease. Depletion studies provided evidence that virus control was primarily mediated by NK cells whereas CD8 T cells contributed to IFN-γ production and less eosinophilic lung inflammation. This study demonstrated the differential roles of effector CD4 and CD8 T cells as well as NK cells, in networking with other inflammatory infiltrates in RSV disease in immune competent and CD4-deficient condition.

2.
Immune Network ; : e51-2020.
Article Dans Anglais | WPRIM | ID: wpr-890848

Résumé

Respiratory syncytial virus (RSV) causes severe pulmonary disease in infants, young children, and the elderly. Formalin inactivated RSV (FI-RSV) vaccine trials failed due to vaccine enhanced respiratory disease, but the underlying immune mechanisms remain not fully understood. In this study, we have used wild type C57BL/6 and CD4 knockout (CD4KO) mouse models to better understand the roles of the CD4 T cells and cellular mechanisms responsible for enhanced respiratory disease after FI-RSV vaccination and RSV infection. Less eosinophil infiltration and lower pro-inflammatory cytokine production were observed in FI-RSV vaccinated CD4KO mice after RSV infection compared to FI-RSV vaccinated C57BL/6 mice. NK cells and cytokine-producing CD8 T cells were recruited at high levels in the airways of CD4KO mice, correlating with reduced respiratory disease. Depletion studies provided evidence that virus control was primarily mediated by NK cells whereas CD8 T cells contributed to IFN-γ production and less eosinophilic lung inflammation. This study demonstrated the differential roles of effector CD4 and CD8 T cells as well as NK cells, in networking with other inflammatory infiltrates in RSV disease in immune competent and CD4-deficient condition.

3.
Immune Network ; : e18-2019.
Article Dans Anglais | WPRIM | ID: wpr-764013

Résumé

Formalin-inactivated respiratory syncytial virus (RSV) vaccination causes vaccine-enhanced disease (VED) after RSV infection. It is considered that vaccine platforms enabling endogenous synthesis of RSV immunogens would induce favorable immune responses than non-replicating subunit vaccines in avoiding VED. Here, we investigated the immunogenicity, protection, and disease in mice after vaccination with RSV fusion protein (F) encoding plasmid DNA (F-DNA) or virus-like particles presenting RSV F (F-VLP). F-DNA vaccination induced CD8 T cells and RSV neutralizing Abs, whereas F-VLP elicited higher levels of IgG2a isotype and neutralizing Abs, and germinal center B cells, contributing to protection by controlling lung viral loads after RSV challenge. However, mice that were immunized with F-DNA displayed weight loss and pulmonary histopathology, and induced F specific CD8 T cell responses and recruitment of monocytes and plasmacytoid dendritic cells into the lungs. These innate immune parameters, RSV disease, and pulmonary histopathology were lower in mice that were immunized with F-VLP after challenge. This study provides important insight into developing effective and safe RSV vaccines.


Sujets)
Animaux , Souris , Lymphocytes B , Cellules dendritiques , ADN , Centre germinatif , Immunoglobuline G , Poumon , Monocytes , Plasmides , Vaccins contre les virus respiratoires syncytiaux , Virus respiratoires syncytiaux , Lymphocytes T , Vaccination , Vaccins sous-unitaires , Charge virale , Perte de poids
4.
Experimental Neurobiology ; : 144-152, 2011.
Article Dans Anglais | WPRIM | ID: wpr-7982

Résumé

The anti-allodynic effect of NMDA receptor antagonist and acupuncture treatments were explored through spinal p35 regulation of diabetic neuropathic rat. We evaluated the change over time of p35/p25 protein levels in the spinal cord compared with behavioral responses to thermal and mechanical stimulation in streptozotocin (STZ)-induced diabetic rats. Additionally, we studied p35 expression when electroacupuncture (EA) and a sub-effective dose of NMDA (N-methyl-D-aspartate) receptor antagonist (MK-801) were used to treat hyperalgesia in the diabetic neuropathic pain (DNP). Thermal paw withdrawal latency (PWL) and mechanical paw withdrawal threshold (PWT) were significantly decreased in the early stage of diabetes in rats. p35 expression after STZ injection gradually decreased from 1 week to 4 weeks compared to normal controls. p25 expression in 4-week diabetic rats was significantly higher than that of 2-week diabetic rats, and thermal PWL in 4-week diabetic rats showed delayed responses to painful thermal stimulation compared with those at 2 weeks. EA applied to the SP-9 point (2 Hz frequency) significantly prevented the thermal and mechanical hyperalgesia in the DNP rat. Additionally, EA combined with MK-801 prolonged anti-hyperalgesia, increased p35 expression, and decreased the cleavage of p35 to p25 during diabetic neuropathic pain. In this study we show EA combined with a sub-effective dose of MK-801 treatment in DNP induced by STZ that is related to p35/p25 expression in spinal cord.


Sujets)
Animaux , Rats , Acupuncture , Neuropathies diabétiques , Maléate de dizocilpine , Électroacupuncture , Hyperalgésie , N-Méthyl-aspartate , Névralgie , Moelle spinale , Streptozocine
5.
Journal of Genetic Medicine ; : 65-70, 1998.
Article Dans Anglais | WPRIM | ID: wpr-35566

Résumé

Lysosomal acid lipase (LAL) plays a central role in the intracellular degradation of neutral lipids derived from plasma lipoproteins. In this study, we investigated the missense mutation within exon 2 of human LAL gene changing of codon -6 of prepeptide from threonine to proline. The Thr-6Pro mutation was detected by the Hae III restriction fragment length polymorphism (RFLP) and single-strand conformation polymorphism (SSCP). We analyzed the mutation in subjects with 221 unrelated randomly selected control samples and 86 patients with familial hypercholesterolemia (FH) in Korea. We observed that mutation is present with high frequency in Korea compared to other populations studied previously. The frequency of PP homozygote in the FH group was observed considerably higher than that of control. However, there was no significant difference of genotype frequency between two groups. These results, together with the fact that plasma lipids and lipoproteins levels between genotypes showed no statistical difference, suggest that the Thr-6Pro mutation in the LAL gene may have no association with the increased risk of FH development.


Sujets)
Humains , Codon , Exons , Génotype , Homozygote , Hyperlipoprotéinémie de type II , Corée , Lipoprotéines , Mutation faux-sens , Plasma sanguin , Polymorphisme de restriction , Proline , Sterol Esterase , Thréonine
SÉLECTION CITATIONS
Détails de la recherche