Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 16 de 16
Filtre
Ajouter des filtres








Gamme d'année
1.
Korean Journal of Dental Materials ; (4): 135-144, 2023.
Article Dans Anglais | WPRIM | ID: wpr-1002151

Résumé

The objective of this study was to investigate the effect of different cooling rates and subsequent post-firing heat treatment on the final hardness of a metal-ceramic alloy. For this, Specimens of Pd-Ag-In-Sn alloy underwent simulated firing at two different cooling rates, followed by post-firing heat treatment. Hardness measurement, microstructure observation, and crystal structure analysis were conducted on the firing simulated and post-firing heat-treated specimens to analyze the causes of hardness variations. The experimental results showed that the difference in cooling rates during simulated firing had an impact on the final hardness of the alloy, and the specimens cooled at the slowest rate (Stage 3) exhibited higher hardness at all firing Stages compared to the specimens cooled at the highest rate (Stage 0). Regardless of the difference in cooling rates during the firing process, the hardness of the alloy significantly increased by the post-firing heat treatment. The increase in hardness by the post-firing heat treatment was attributed to the formation of fine precipitates in the matrix, and the precipitation reaction occurred as a result of the decrease in solubility of (Pd, Ag, Au) 3 (In, Sn, Zn) phase in the Pd-Ag-rich matrix. The clinical significance of this study is that performing the post-firing heat treatment demonstrates effectiveness in increasing the reduced hardness after porcelain firing in metal-ceramic alloys.

2.
Korean Journal of Dental Materials ; (4): 153-160, 2022.
Article Dans Anglais | WPRIM | ID: wpr-968031

Résumé

The aim of this study was to determine the photocatalytic effect of doped-TiO 2 nanoparticles (NPs) on teeth bleaching with an aid of 3% H2O2 and laser irradiation. For the study, Mo-N-TiO2 NPs were prepared. The characteristics of the prepared NPs, NPs morphology and light absorbance, were evaluated. Photocatalytic reactions of NPs were tested using 10 ppm methylene blue (MB) solution. Extracted teeth were pasted using carbomer gel for color differences measurements. Mo-N-TiO2 NPs have close to round shape with some tens nm size. Their absorbance was higher and longer than that of TiO 2 NPs. For MB solution, Mo-N-TiO2 with 3% H2O2 condition showed much decrease in absorbance after laser irradiation for 20 min. Also, regardless of wavelength, Mo-N-TiO2 NPs produced much greater color difference (whitening) on teeth after 3 h than that by 15% H2O2 .

3.
Korean Journal of Dental Materials ; (4): 269-280, 2021.
Article Dans Anglais | WPRIM | ID: wpr-917590

Résumé

This study investigated the effect of the difference in the cooling rates on the optical properties of zirconia during the simulated firing of porcelain, without a porcelain layer on a zirconia core ceramic. No difference was observed in the average transmittance of zirconia with the cooling rate during simulated firing (p>0.05). In all groups, the average transmittance decreased from approximately 44% to approximately 28% (p0.05). In all groups, the translucency decreased from approximately 16 to approximately 5 (p<0.001), while the opalescence increased from approximately 6 to approximately 11 (p<0.001) as the thickness increased from 0.51 mm to 2.00 mm. Thus, the average transmittance and translucency parameter decreased exponentially as the thickness increased in all groups regardless of the cooling rate during simulated porcelain firing, while the opalescence parameter increased in a parabolic manner. Therefore, in this study, even if porcelain is fired at a cooling rate higher or lower than the typical cooling rate when manufacturing a prosthesis with a zirconia core, the optical properties of zirconia are not expected to be significantly affected.

4.
Korean Journal of Dental Materials ; (4): 61-70, 2021.
Article Dans Anglais | WPRIM | ID: wpr-901906

Résumé

The effect of the cooling rate on changes in hardness, flexural strength, and microstructure of zirconia core ceramics was investigated during simulated porcelain firing without layering porcelain on the zirconia core ceramic. Three cooling rates were tested: 227.5 ℃/min, which is the rate suggested by the manufacturer, Stage 0 (taking the ceramic out of the firing chamber immediately after firing and bench cooling to room temperature), and Stage 3 (cooling to 600 ℃ with the firing chamber closed and then bench cooling to room temperature (33 ℃/min)). In the Stage 0 group and the group cooled at the rate suggested by the manufacturer, the hardness increased compared to the group before firing (p0.05). The grain size of the specimen groups whose hardness increased after firing was reduced by recrystallization, but the Stage 3 group had coarsened grains. In all test groups before and after firing, only the tetragonal phase was observed. In particular, a metastable phase (T’) in which the axial ratio (c/a ratio = c/√ 2a) was closer to 1 coexisted with the tetragonal phase. The flexural strength of the zirconia core did not exhibit a significant difference with respect to the cooling rate (p>0.05).

5.
Korean Journal of Dental Materials ; (4): 61-70, 2021.
Article Dans Anglais | WPRIM | ID: wpr-894202

Résumé

The effect of the cooling rate on changes in hardness, flexural strength, and microstructure of zirconia core ceramics was investigated during simulated porcelain firing without layering porcelain on the zirconia core ceramic. Three cooling rates were tested: 227.5 ℃/min, which is the rate suggested by the manufacturer, Stage 0 (taking the ceramic out of the firing chamber immediately after firing and bench cooling to room temperature), and Stage 3 (cooling to 600 ℃ with the firing chamber closed and then bench cooling to room temperature (33 ℃/min)). In the Stage 0 group and the group cooled at the rate suggested by the manufacturer, the hardness increased compared to the group before firing (p0.05). The grain size of the specimen groups whose hardness increased after firing was reduced by recrystallization, but the Stage 3 group had coarsened grains. In all test groups before and after firing, only the tetragonal phase was observed. In particular, a metastable phase (T’) in which the axial ratio (c/a ratio = c/√ 2a) was closer to 1 coexisted with the tetragonal phase. The flexural strength of the zirconia core did not exhibit a significant difference with respect to the cooling rate (p>0.05).

6.
Korean Journal of Dental Materials ; (4): 181-192, 2020.
Article Dans Anglais | WPRIM | ID: wpr-901894

Résumé

In this study, Au-Pt-Pd metal-ceramic alloy was examined by varying cooling rate during simulated porcelain firing cycles to investigate the effect of cooling rate on hardness and related microstructure during simulated firing. The final hardness was different according to the cooling rate after the simulated porcelain firing cycles. The reduction in hardness value was smaller after cooling at the faster cooling rate (Stage 0) than the value after slower rate (Stage 3). In the ice-quenched specimens after oxidation treatment (OXI-IQ), homogenization was slightly occurred, and the hardness decreased apparently compared to that of the as-cast specimens (AS-CAST). In the specimens cooled at Stage 0 and Stage 3 after oxidation, the hardness increased apparently compared to the ice-quenched specimens, even though the hardness decreased later by further firing simulation.The final hardness was lower in the specimen cooled at the slower rate (Stage 3) than the faster rate (Stage 0), and it seems to be due to the coarsening of the microstructure. The matrix and precipitates were consisted of FCC (face-centered-cubic) structure rich in Au. The Au content was higher in the matrix and the Pt content was higher in the precipitates, which corresponded to the Au-Pt binary phase diagram.

7.
Korean Journal of Dental Materials ; (4): 193-202, 2020.
Article Dans Anglais | WPRIM | ID: wpr-901893

Résumé

The purpose of the present study was to assess the temperature change and compressive property of bulk-fill composites (BFCs) by the light curing. Seven resin-based composites (RBCs), including five BFCs, were chosen to evaluate their maximum temperature rise and exothermic heat during and after light curing and compressive strength (CS) and modulus (CM) for 4-mm thick state. Light attenuation coefficients (ACs) showed reasonably high correlation with filler content (vol% and wt%).Except one resin product, AC values of BFCs were lower than those of RBCs tested. All the tested specimens showed temperature rise (9.8-23.6℃) and exothermic heat (4.2-18.3℃) for 4-mm thick case. CS and CM values of the tested specimens ranged approximately 69 to 116 MPa and 1.3 to 2.8 GPa, respectively. The difference of temperature changes and compressive properties (CS and CM) between BFCs and RBCs was not consistent and had no statistically consistent significance.

8.
Korean Journal of Dental Materials ; (4): 181-192, 2020.
Article Dans Anglais | WPRIM | ID: wpr-894190

Résumé

In this study, Au-Pt-Pd metal-ceramic alloy was examined by varying cooling rate during simulated porcelain firing cycles to investigate the effect of cooling rate on hardness and related microstructure during simulated firing. The final hardness was different according to the cooling rate after the simulated porcelain firing cycles. The reduction in hardness value was smaller after cooling at the faster cooling rate (Stage 0) than the value after slower rate (Stage 3). In the ice-quenched specimens after oxidation treatment (OXI-IQ), homogenization was slightly occurred, and the hardness decreased apparently compared to that of the as-cast specimens (AS-CAST). In the specimens cooled at Stage 0 and Stage 3 after oxidation, the hardness increased apparently compared to the ice-quenched specimens, even though the hardness decreased later by further firing simulation.The final hardness was lower in the specimen cooled at the slower rate (Stage 3) than the faster rate (Stage 0), and it seems to be due to the coarsening of the microstructure. The matrix and precipitates were consisted of FCC (face-centered-cubic) structure rich in Au. The Au content was higher in the matrix and the Pt content was higher in the precipitates, which corresponded to the Au-Pt binary phase diagram.

9.
Korean Journal of Dental Materials ; (4): 193-202, 2020.
Article Dans Anglais | WPRIM | ID: wpr-894189

Résumé

The purpose of the present study was to assess the temperature change and compressive property of bulk-fill composites (BFCs) by the light curing. Seven resin-based composites (RBCs), including five BFCs, were chosen to evaluate their maximum temperature rise and exothermic heat during and after light curing and compressive strength (CS) and modulus (CM) for 4-mm thick state. Light attenuation coefficients (ACs) showed reasonably high correlation with filler content (vol% and wt%).Except one resin product, AC values of BFCs were lower than those of RBCs tested. All the tested specimens showed temperature rise (9.8-23.6℃) and exothermic heat (4.2-18.3℃) for 4-mm thick case. CS and CM values of the tested specimens ranged approximately 69 to 116 MPa and 1.3 to 2.8 GPa, respectively. The difference of temperature changes and compressive properties (CS and CM) between BFCs and RBCs was not consistent and had no statistically consistent significance.

10.
Korean Journal of Dental Materials ; (4): 229-242, 2019.
Article Dans Coréen | WPRIM | ID: wpr-917583

Résumé

In this experiment, the alloy having the composition of 49.5Pd-40Ag-9In-1Ga (wt.%) was used to find the most effective cooling rate for the hardening of alloy during porcelain firing simulation. In each stage of firing simulation, ice-quenching or cooling at the most effective cooling rate for hardening of the alloy was done after firing to observe changes in the hardness and associated microstructures during the firing and subsequent cooling. For this purpose, the firing simulated alloy was characterized by analyzing the changes in hardness, microstructure, crystal structure and the elemental distribution. The hardness of alloy decreased by cooling after oxidation treatment, which was induced by the homogenization of the specimen. In this alloy, the most effective cooling rate for alloy hardening after oxidation treatment was Stage 0. During the porcelain firing simulation until the final firing stage, the cooling rate was set to Stage 0, and the complete firing simulation was performed until the final firing stage, Glaze. As a result, the final hardness of the metal substructure obtained after complete firing simulation was lower than that of the as-cast specimen. The decrease in hardness caused by the porcelain firing simulation results from a reduction in the interface between the precipitates of face-centered tetragonal structures and the matrix of face-centered cubic structures as the precipitates coarsen.

11.
Korean Journal of Dental Materials ; (4): 53-60, 2019.
Article Dans Anglais | WPRIM | ID: wpr-750288

Résumé

The pH of the oral cavity can dynamically change due to diverse foods and beverages served. The purpose of the present study was to evaluate flexural and compressive properties of composite resins after immersion in solutions of different pHs. Four composite resins were cured and immersed in test solutions of different pHs (3, 7.1, and 9) for 2 weeks. Flexural and compressive properties (strength and modulus) were evaluated using universal test machine. After immersion, initial flexural and compressive strength significantly changed to 1.5–30.0% and 0.3–19.6%, respectively; flexural and compressive modulus significantly changed to 4.4–29.0% and 3.5–21.5%, respectively. However, the values obtained from solutions of different pHs were not significantly and consistently different to each other.


Sujets)
Boissons , Résines composites , Résistance à la compression , Concentration en ions d'hydrogène , Immersion , Bouche
12.
Korean Journal of Dental Materials ; (4): 175-184, 2019.
Article Dans Anglais | WPRIM | ID: wpr-759675

Résumé

There has been increasing use of the H₂O₂-based teeth bleaching agents. The purpose of this study was to evaluate the bleaching effectiveness of the laser irradiation combined with nitrogen doped-TiO₂ nanoparticles (NPs) on the stained resin. Nitrogen (N) doped-TiO₂ NPs were prepared under sol-gel method. Light absorbance, X-ray diffraction patterns of NPs, and bleaching of methylene blue and stained resins were evaluated. For bleaching of stained resin, NPs-containing gel was used. For irradiation, light of two different wavelengths was used. Unlike TiO₂, N-TiO₂ showed high absorbance after 400 nm. N-TiO₂, which have used TiN as a precursor, showed a new rutile phase at the TiN structure. For methylene blue solution, N-TiO₂ with 3% H₂O₂ resulted in the greatest absorbance decrease after laser irradiation regardless of wavelength. For stained resin test, N-TiO₂ with 3% H₂O₂ resulted in the greatest color difference after laser irradiation, followed by group that used N-TiO₂ without 3% H₂O₂.


Sujets)
Méthodes , Bleu de méthylène , Nanoparticules , Azote , Étain , Agents de blanchiment des dents , Diffraction des rayons X
13.
Korean Journal of Dental Materials ; (4): 179-186, 2018.
Article Dans Anglais | WPRIM | ID: wpr-759664

Résumé

The aim of this study was to determine if a 457 nm blue laser could effectively polymerize dental composite resins. After light curing 6 dental composite resins using a laser or a LED light-curing unit at 530 mW/cm2 and 900 mW/cm2, respectively, degree of conversion and microhardness were evaluated. Degree of conversion of specimens by the laser and LED was similar (on top surface 54.4–67.7% and 55.2–67.1%, respectively; on bottom surface 35.1–53.8% and 45.4–53.1%, respectively). Microhardness was also similar (on top surface 28.5–83.6 Hv and 19.1–82.4 Hv, respectively; on bottom surface 22.5–65.4 Hv and 16.8–74.4 Hv, respectively), although, in some cases, laser-treated specimens showed slightly lower microhardness than the LED-treated on bottom surface. The present study shows that the 457 nm laser can polymerize dental composite resins to the same level as LED achieved.


Sujets)
Résines composites , Polymérisation , Polymères
14.
Korean Journal of Dental Materials ; (4): 199-208, 2018.
Article Dans Coréen | WPRIM | ID: wpr-759662

Résumé

In this study, change of optical properties and microstructure of an Ag-Pd-In alloy according to Ag content was investigated. For this purpose, specimen alloys were prepared by adding 0–100 wt.% of Ag to the 50Pd-50In (wt.%) alloy. When the content of Ag was more than 40 wt.%, the color difference with pure gold specimen was increased(p < 0.001). L* value increased as the Ag content of the specimen increased, but a* and b* value increased until the addition of 20 wt.% Ag, and then decreased with increasing Ag content(p < 0.001). Ag-free specimen was single phase in the as-cast state, but when the content of Ag was more than 20 wt.%, the phase separation occurred and two phases of matrix and dendrite or granular structure were confirmed. The dendrite or granular structure was composed of the InPd phase, and the matrix was composed of the Ag-rich phase. From these results, it can be concluded that the specimens with Ag content of 20–70 wt.% have the Ag-rich matrix which has a high L* value and low a* and b* value, and have the dendrite structure which has a low L* value and high a* and b* value. As the content of Ag increased, the color changed from light yellow to silver white due to the increase in the ratio of the matrix to the dendrite or granular structure.


Sujets)
Alliages , Dendrites , Argent
15.
Korean Journal of Dental Materials ; (4): 129-138, 2018.
Article Dans Anglais | WPRIM | ID: wpr-759657

Résumé

Flowable resins can be used as a base material during the restoration of deep tooth cavity. The purpose of the present study was to evaluate the mechanical properties of the layered specimens which have flowable resin as a base material. For the study, two composite resins and five flowable resins were chosen for the overlying and base materials, respectively. Flexural and compressive properties of each bulk and ten layered specimens were measured. Layered specimens showed high flexural strength (FS) and flexural modulus (FM) if bulk state FS and FM of the base flowable resin are high. However, compressive strength (CS) was not that case. CS of the layered specimen was not high (251.4~295.3 MPa) whether CS of the bulk state is high or not (259.8~439.8 MPa). FM showed high linear correlation with CM. After all mechanical properties of the layered specimens were not consistently influenced by the mechanical properties of the base flowable resins regardless of the overlying composite resins.


Sujets)
Résines composites , Résistance à la compression , Dent
16.
Korean Journal of Dental Materials ; (4): 21-34, 2018.
Article Dans Coréen | WPRIM | ID: wpr-759653

Résumé

Effect of cooling rate during oxidation treatment on the hardness change by post firing heat treatment of a Pd-Cu-Ga-Zn alloy after simulated porcelain firing was investigated and the following results were obtained. In the firing simulated specimens after quenching during the oxidation treatment, the hardness did not increase by post-firing heat treatment. However, in the firing simulated specimens after slow cooling during the oxidation treatment, post-firing heat treatment for 25 minutes was effective in increasing the hardness (p < 0.05). In the firing simulated specimens after quenching during the oxidation treatment, the significant decrease in hardness during the post-firing heat treatment was attributed to the coarsening of fine precipitates formed in the matrix and plate-like precipitates. In the firing simulated specimens after slow cooling during the oxidation treatment, the increase in hardness during the post-firing heat treatment for 25 minutes was due to precipitation hardening. From these results, it was found that the cooling rate during the oxidation treatment affected the change of hardness by the post-firing heat treatment after the simulated firing. From these results, post-firing heat treatment increased the hardness of the Pd-Cu-Ga-Zn alloy only when the cooling rate during the oxidation treatment was slow.


Sujets)
Alliages , Porcelaine dentaire , Incendies , Dureté , Température élevée
SÉLECTION CITATIONS
Détails de la recherche